Može Matic, Senegačnik Matej, Gregorčič Peter, Hočevar Matej, Zupančič Matevž, Golobič Iztok
Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia.
Institute of Metals and Technology, Lepi pot 11, 1000 Ljubljana, Slovenia.
ACS Appl Mater Interfaces. 2020 May 27;12(21):24419-24431. doi: 10.1021/acsami.0c01594. Epub 2020 May 12.
Functionalized interfaces enhancing phase-change processes have immense applicability in thermal management. Here, a methodology for fabrication of surfaces enabling extreme boiling heat transfer performance is demonstrated, combining direct nanosecond laser texturing and chemical vapor deposition of a hydrophobic fluorinated silane. Multiple strategies of laser texturing are explored on aluminum with subsequent nanoscale hydrophobization. Both superhydrophilic and superhydrophobic surfaces with laser-engineered microcavities exhibit significant enhancement of the pool boiling heat transfer. Surfaces with superhydrophobic microcavities allow for enhancements of a heat transfer coefficient of over 500%. Larger microcavities with a mean diameter of 4.2 μm, achieved using equidistant laser scanning separation, induce an early transition into the favorable nucleate boiling regime, while smaller microcavities with a mean diameter of 2.8 μm, achieved using variable separation, provide superior performance at high heat fluxes. The enhanced boiling performance confirms that the Wenzel wetting regime is possible during boiling on apparently superhydrophobic surfaces. A notable critical heat flux enhancement is demonstrated on superhydrophobic surfaces with an engineered microstructure showing definitively the importance and concomitant effect of both the surface wettability and topography for enhanced boiling. The fast, low-cost, and repeatable fabrication process has great potential for advanced thermal management applications.
功能化界面增强相变过程在热管理中具有巨大的应用潜力。本文展示了一种制造具有极端沸腾传热性能表面的方法,该方法结合了直接纳秒激光纹理化和疏水性氟化硅烷的化学气相沉积。在铝表面探索了多种激光纹理化策略,并随后进行了纳米级疏水化处理。具有激光工程微腔的超亲水和超疏水表面均显著增强了池沸腾传热性能。具有超疏水微腔的表面可使传热系数提高超过500%。使用等距激光扫描间距获得的平均直径为4.2μm的较大微腔,促使沸腾提前转变为有利的核态沸腾状态,而使用可变间距获得的平均直径为2.8μm的较小微腔,在高热流密度下具有更优异的性能。增强的沸腾性能证实了在明显超疏水表面上沸腾过程中可能存在文策尔润湿状态。在具有工程化微观结构的超疏水表面上,临界热流密度显著提高,明确显示了表面润湿性和形貌对增强沸腾的重要性及协同效应。这种快速、低成本且可重复的制造工艺在先进热管理应用中具有巨大潜力。