Zukun Wang, Wu Ruihan, Chen Zeng, Ye Lei, Li Hanying, Zhu Haiming
Centre for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang, China.
MOE Key Laboratory of Macromolecule Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China.
J Phys Chem A. 2020 May 28;124(21):4185-4192. doi: 10.1021/acs.jpca.0c01791. Epub 2020 May 18.
The singlet fission (SF) process converts one high-energy singlet exciton to two low-energy triplet excitons after absorbing one photon. Organic photovoltaic devices based on the SF process have shown great potential in solar energy conversion to exceed Shockley-Queisser limit. The key to SF photovoltaic devices requires efficient electron transfer (ET) from triplet exciton after SF, which is yet to be thoroughly investigated. Here, we performed thorough photophysical studies in 6,13-Bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene)/C heterostructures using TIPS-pentacene microsize single crystal as a well-defined model system. We show the SF process in TIPS-pentacene single crystal occurs by a two-step process, with triplet pair intermediates forming in 75 fs and then dissociating to non-interacting triplets in 1.6 ps. The SF process in single crystal is comparable to that in polycrystalline film. Importantly, we observe a considerable fraction of singlet excitons is quenched by ultrafast (<75 fs) interfacial ET prior to fission and no ET from triplet excitons in 1.5 ns time window. We confirm that the absence of ET is not limited by exciton diffusion but due to very slow (≫1.5 ns) interfacial ET from triplet exciton. The observations contradict expected singlet and triplet ET behaviors based on a simple two-state Marcus ET model and suggest long-range interfacial ET from delocalized photoexcitation. The ultrafast ET from singlet exciton before SF and slow ET from triplet exciton call for reconsideration and careful design of efficient SF photovoltaic devices.
单线态裂变(SF)过程在吸收一个光子后,可将一个高能单线态激子转化为两个低能三线态激子。基于SF过程的有机光伏器件在太阳能转换方面展现出巨大潜力,有望突破肖克利-奎塞尔极限。SF光伏器件的关键在于SF之后三线态激子的高效电子转移(ET),而这一点尚未得到充分研究。在此,我们以6,13-双(三异丙基甲硅烷基乙炔基)并五苯(TIPS-并五苯)微尺寸单晶作为一个明确的模型体系,对TIPS-并五苯/C异质结构进行了全面的光物理研究。我们发现TIPS-并五苯单晶中的SF过程通过两步进行,三线态激子对中间体在75飞秒内形成,然后在1.6皮秒内解离为非相互作用的三线态。单晶中的SF过程与多晶薄膜中的相当。重要的是,我们观察到相当一部分单线态激子在裂变前被超快(<75飞秒)的界面ET淬灭,并且在1.5纳秒的时间窗口内没有三线态激子的ET。我们证实ET的缺失并非受激子扩散限制,而是由于三线态激子的界面ET非常缓慢(≫1.5纳秒)。这些观察结果与基于简单二态马库斯ET模型预期的单线态和三线态ET行为相矛盾,并表明存在来自离域光激发的长程界面ET。SF前单线态激子的超快ET和三线态激子的缓慢ET要求我们重新考虑并精心设计高效的SF光伏器件。