Cavendish Laboratory , University of Cambridge , J. J. Thomson Avenue , Cambridge CB3 0HE , United Kingdom.
Department of Chemistry, Ångström Laboratory , Uppsala University , Box 532, Uppsala SE-751 20 , Sweden.
J Am Chem Soc. 2019 Aug 14;141(32):12907-12915. doi: 10.1021/jacs.9b06584. Epub 2019 Aug 2.
Singlet fission is an exciton multiplication process in organic molecules in which a photogenerated spin-singlet exciton is rapidly and efficiently converted to two spin-triplet excitons. This process offers a mechanism to break the Shockley-Queisser limit by overcoming the thermalization losses inherent to all single-junction photovoltaics. One of the most promising methods to harness the singlet fission process is via the efficient extraction of the dark triplet excitons into quantum dots (QDs) where they can recombine radiatively, thereby converting high-energy photons to pairs of low-energy photons, which can then be captured in traditional inorganic PVs such as Si. Such a singlet fission photon multiplication (SF-PM) process could increase the efficiency of the best Si cells from 26.7% to 32.5%, breaking the Shockley-Queisser limit. However, there has been no demonstration of such a singlet fission photon multiplication (SF-PM) process in a bulk system to date. Here, we demonstrate a solution-based bulk SF-PM system based on the singlet fission material TIPS-Tc combined with PbS QDs. Using a range of steady-state and time-resolved measurements combined with analytical modeling we study the dynamics and mechanism of the triplet harvesting process. We show that the system absorbs >95% of incident photons within the singlet fission material to form singlet excitons, which then undergo efficient singlet fission in the solution phase (135 ± 5%) before quantitative harvesting of the triplet excitons (95 ± 5%) via a low concentration of QD acceptors, followed by the emission of IR photons. We find that in order to achieve efficient triplet harvesting it is critical to engineer the surface of the QD with a triplet transfer ligand and that bimolecular decay of triplets is potentially a major loss pathway which can be controlled via tuning the concentration of QD acceptors. We demonstrate that the photon multiplication efficiency is maintained up to solar fluence. Our results establish the solution-based SF-PM system as a simple and highly tunable platform to understand the dynamics of a triplet energy transfer process between organic semiconductors and QDs, one that can provide clear design rules for new materials.
单线态裂变是有机分子中的激子倍增过程,其中光生的自旋单线态激子迅速有效地转化为两个自旋三重态激子。 该过程提供了一种通过克服所有单结光伏固有的热化损失来突破肖克利-奎塞尔限制的机制。 利用单线态裂变过程的最有前途的方法之一是通过有效地将暗三重态激子提取到量子点(QD)中,在那里它们可以辐射复合,从而将高能光子转换为一对低能光子,然后可以在传统的无机光伏(例如 Si)中捕获。 这种单线态裂变光子倍增(SF-PM)过程可以将最佳 Si 电池的效率从 26.7%提高到 32.5%,从而突破肖克利-奎塞尔限制。 但是,迄今为止,在本体系统中尚未证明存在这种单线态裂变光子倍增(SF-PM)过程。 在这里,我们基于单线态裂变材料 TIPS-Tc 与 PbS QD 相结合,展示了一种基于溶液的本体 SF-PM 系统。 我们使用一系列稳态和时间分辨测量以及分析模型来研究三重态收获过程的动力学和机制。 我们表明,该系统吸收> 95%的入射光子在单线态裂变材料中形成单线态激子,然后在溶液相中高效地进行单线态裂变(135±5%),然后通过低浓度的 QD 受体定量地收获三重态激子(95±5%),随后发射红外光子。 我们发现,为了实现高效的三重态收获,必须对 QD 的表面进行三重态转移配体的工程设计,并且双分子三重态衰减可能是一个主要的损耗途径,可以通过调节 QD 受体的浓度来控制。 我们证明,光子倍增效率在太阳照度下保持不变。 我们的结果确立了基于溶液的 SF-PM 系统作为一种简单且高度可调谐的平台,用于理解有机半导体和 QD 之间三重态能量转移过程的动力学,这为新材料提供了明确的设计规则。