Suppr超能文献

一种用于加速运动补偿全心脏 3D 冠状动脉磁共振血管成像的多尺度变分神经网络。

A multi-scale variational neural network for accelerating motion-compensated whole-heart 3D coronary MR angiography.

机构信息

School of Biomedical Engineering and Imaging Sciences, King's College London, UK.

School of Biomedical Engineering and Imaging Sciences, King's College London, UK.

出版信息

Magn Reson Imaging. 2020 Jul;70:155-167. doi: 10.1016/j.mri.2020.04.007. Epub 2020 Apr 27.

Abstract

PURPOSE

To enable fast reconstruction of undersampled motion-compensated whole-heart 3D coronary magnetic resonance angiography (CMRA) by learning a multi-scale variational neural network (MS-VNN) which allows the acquisition of high-quality 1.2 × 1.2 × 1.2 mm isotropic volumes in a short and predictable scan time.

METHODS

Eighteen healthy subjects and one patient underwent free-breathing 3D CMRA acquisition with variable density spiral-like Cartesian sampling, combined with 2D image navigators for translational motion estimation/compensation. The proposed MS-VNN learns two sets of kernels and activation functions for the magnitude and phase images of the complex-valued data. For the magnitude, a multi-scale approach is applied to better capture the small calibre of the coronaries. Ten subjects were considered for training and validation. Prospectively undersampled motion-compensated data with 5-fold and 9-fold accelerations, from the remaining 9 subjects, were used to evaluate the framework. The proposed approach was compared to Wavelet-based compressed-sensing (CS), conventional VNN, and to an additional fully-sampled (FS) scan.

RESULTS

The average acquisition time (m:s) was 4:11 for 5-fold, 2:34 for 9-fold acceleration and 18:55 for fully-sampled. Reconstruction time with the proposed MS-VNN was ~14 s. The proposed MS-VNN achieves higher image quality than CS and VNN reconstructions, with quantitative right coronary artery sharpness (CS:43.0%, VNN:43.9%, MS-VNN:47.0%, FS:50.67%) and vessel length (CS:7.4 cm, VNN:7.7 cm, MS-VNN:8.8 cm, FS:9.1 cm) comparable to the FS scan.

CONCLUSION

The proposed MS-VNN enables 5-fold and 9-fold undersampled CMRA acquisitions with comparable image quality that the corresponding fully-sampled scan. The proposed framework achieves extremely fast reconstruction time and does not require tuning of regularization parameters, offering easy integration into clinical workflow.

摘要

目的

通过学习多尺度变分神经网络(MS-VNN),实现快速重建欠采样运动补偿全心脏 3D 冠状动脉磁共振血管造影(CMRA),该方法允许在短时间内获得高质量的 1.2×1.2×1.2mm 各向同性体积。

方法

18 名健康志愿者和 1 名患者接受了自由呼吸 3D CMRA 采集,采用变密度螺旋状笛卡尔采样,结合 2D 图像导航仪进行平移运动估计/补偿。所提出的 MS-VNN 为复数数据的幅度和相位图像学习了两组核和激活函数。对于幅度,采用多尺度方法来更好地捕捉冠状动脉的小口径。10 名受试者用于训练和验证。从其余 9 名受试者中前瞻性地对 5 倍和 9 倍加速的运动补偿欠采样数据进行评估。将所提出的方法与基于小波的压缩感知(CS)、传统 VNN 以及额外的完全采样(FS)扫描进行比较。

结果

5 倍加速的平均采集时间(m:s)为 4:11,9 倍加速的为 2:34,完全采样的为 18:55。使用所提出的 MS-VNN 的重建时间约为 14s。与 CS 和 VNN 重建相比,所提出的 MS-VNN 实现了更高的图像质量,右冠状动脉锐度(CS:43.0%,VNN:43.9%,MS-VNN:47.0%,FS:50.67%)和血管长度(CS:7.4cm,VNN:7.7cm,MS-VNN:8.8cm,FS:9.1cm)与 FS 扫描相当。

结论

所提出的 MS-VNN 可实现 5 倍和 9 倍欠采样 CMRA 采集,具有与相应完全采样扫描相当的图像质量。该框架实现了极快的重建时间,并且不需要调整正则化参数,为轻松集成到临床工作流程提供了便利。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验