Song Yanan, Gao Liang, Li Xinyu, Shen Weiming
State Key Lab. of Digital Manufacturing Equipment & Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
Sensors (Basel). 2020 Apr 28;20(9):2501. doi: 10.3390/s20092501.
Deep learning is robust to the perturbation of a point cloud, which is an important data form in the Internet of Things. However, it cannot effectively capture the local information of the point cloud and recognize the fine-grained features of an object. Different levels of features in the deep learning network are integrated to obtain local information, but this strategy increases network complexity. This paper proposes an effective point cloud encoding method that facilitates the deep learning network to utilize the local information. An axis-aligned cube is used to search for a local region that represents the local information. All of the points in the local region are available to construct the feature representation of each point. These feature representations are then input to a deep learning network. Two well-known datasets, ModelNet40 shape classification benchmark and Stanford 3D Indoor Semantics Dataset, are used to test the performance of the proposed method. Compared with other methods with complicated structures, the proposed method with only a simple deep learning network, can achieve a higher accuracy in 3D object classification and semantic segmentation.
深度学习对作为物联网中一种重要数据形式的点云扰动具有鲁棒性。然而,它无法有效地捕捉点云的局部信息并识别物体的细粒度特征。深度学习网络中不同层次的特征被整合以获取局部信息,但这种策略增加了网络复杂性。本文提出了一种有效的点云编码方法,便于深度学习网络利用局部信息。使用一个与坐标轴对齐的立方体来搜索代表局部信息的局部区域。局部区域内的所有点都可用于构建每个点的特征表示。然后将这些特征表示输入到深度学习网络中。使用两个著名的数据集,即ModelNet40形状分类基准数据集和斯坦福3D室内语义数据集,来测试所提方法的性能。与其他结构复杂的方法相比,所提方法仅使用一个简单的深度学习网络,就能在3D物体分类和语义分割中实现更高的准确率。