Suppr超能文献

基于数据引导的气体场景设计的物理参数学习与细节增强

Learning Physical Parameters and Detail Enhancement for Gaseous Scene Design Based on Data Guidance.

作者信息

Li Chen, Qiu Sheng, Wang Changbo, Qin Hong

出版信息

IEEE Trans Vis Comput Graph. 2021 Oct;27(10):3867-3880. doi: 10.1109/TVCG.2020.2991217. Epub 2021 Sep 1.

Abstract

This article articulates a novel learning framework for both parameter estimation and detail enhancement for Eulerian gas based on data guidance. The key motivation of this article is to devise a new hybrid, grid-based simulation that could inherit modeling and simulation advantages from both physically-correct simulation methods and powerful data-driven methods, while combating existing difficulties exhibited in both approaches. We first employ a convolutional neural network (CNN) to estimate the physical parameters of gaseous phenomena in Eulerian settings, then we can use the just-learnt parameters to re-simulate (with or without artists' guidance) for specific scenes with flexible coupling effects. Next, a second CNN is adopted to reconstruct the high-resolution velocity field to guide a fast re-simulation on the finer grid, achieving richer and more realistic details with little extra computational expense. From the perspective of physics-based simulation, our trained networks respect temporal coherence and physical constraints. From the perspective of the data-driven machine-learning approaches, our network design aims at extracting a meaningful parameters and reconstructing visually realistic details. Additionally, our implementation based on parallel acceleration could significantly enhance the computational performance of every involved module. Our comprehensive experiments confirm the controllability, effectiveness, and accuracy of our novel approach when producing various gaseous scenes with rich details for widespread graphics applications.

摘要

本文阐述了一种基于数据引导的用于欧拉气体参数估计和细节增强的新型学习框架。本文的关键动机是设计一种新的混合的、基于网格的模拟方法,该方法可以继承物理正确模拟方法和强大的数据驱动方法的建模与模拟优势,同时克服这两种方法中存在的现有困难。我们首先使用卷积神经网络(CNN)来估计欧拉设置中气体现象的物理参数,然后我们可以使用刚学习到的参数对具有灵活耦合效应的特定场景进行重新模拟(有或没有艺术家的指导)。接下来,采用第二个CNN来重建高分辨率速度场,以指导在更精细网格上的快速重新模拟,从而在几乎不增加额外计算成本的情况下实现更丰富、更逼真的细节。从基于物理的模拟角度来看,我们训练的网络尊重时间连贯性和物理约束。从数据驱动的机器学习方法角度来看,我们的网络设计旨在提取有意义的参数并重建视觉上逼真的细节。此外,我们基于并行加速的实现可以显著提高每个相关模块的计算性能。我们的综合实验证实了我们的新方法在为广泛的图形应用生成具有丰富细节的各种气体场景时的可控性、有效性和准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验