Neale Samuel E, Pantazis Dimitrios A, Macgregor Stuart A
Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, United KingdomEH14 4AS.
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
Dalton Trans. 2020 May 19;49(19):6478-6487. doi: 10.1039/d0dt00993h.
Co(iii) complexes are increasingly prevalent in homogeneous catalysis. Catalytic cycles involve multiple intermediates, many of which will feature unsaturated metal centres. This raises the possibility of multi-state character along reaction pathways and so requires an accurate approach to calculating spin-state energetics. Here we report an assessment of the performance of DLPNO-CCSD(T) (domain-based local pair natural orbital approximation to coupled cluster theory) against experimental 1Co to 3Co spin splitting energies for a series of pseudo-octahedral Co(iii) complexes. The alternative NEVPT2 (strongly-contracted n-electron valence perturbation theory) and a range of density functionals are also assessed. DLPNO-CCSD(T) is identified as a highly promising method, with mean absolute deviations (MADs) as small as 1.3 kcal mol-1 when Kohn-Sham reference orbitals are used. DLPNO-CCSD(T) out-performs NEVPT2 for which a MAD of 3.5 kcal mol-1 can be achieved when a (10,12) active space is employed. Of the nine DFT methods investigated TPSS is the leading functional, with a MAD of 1.9 kcal mol-1. Our results show how DLPNO-CCSD(T) can provide accurate spin state energetics for Co(iii) species in particular and first row transition metal systems in general. DLPNO-CCSD(T) is therefore a promising method for applications in the burgeoning field of homogeneous catalysis based on Co(iii) species.
钴(III)配合物在均相催化中越来越普遍。催化循环涉及多个中间体,其中许多将具有不饱和金属中心。这增加了反应途径中多态特征的可能性,因此需要一种精确的方法来计算自旋态能量学。在这里,我们报告了基于密度泛函理论的局域对自然轨道近似耦合簇理论(DLPNO-CCSD(T))对于一系列伪八面体钴(III)配合物的实验1Co到3Co自旋分裂能的性能评估。还评估了替代的强收缩n电子价态微扰理论(NEVPT2)和一系列密度泛函。DLPNO-CCSD(T)被认为是一种非常有前途的方法,当使用Kohn-Sham参考轨道时,平均绝对偏差(MADs)小至1.3 kcal mol-1。当采用(10,12)活性空间时,DLPNO-CCSD(T)的表现优于NEVPT2,后者的MAD为3.5 kcal mol-1。在所研究的九种密度泛函理论(DFT)方法中,TPSS是领先的泛函,MAD为1.9 kcal mol-1。我们的结果表明,DLPNO-CCSD(T)如何能够为特别是钴(III)物种以及一般的第一行过渡金属系统提供准确的自旋态能量学。因此,DLPNO-CCSD(T)是一种有前途的方法,可应用于基于钴(III)物种的新兴均相催化领域。