Department of Physics, King's College London, UK.
Randall Centre for Cell & Molecular Biophysics, King's College London, UK.
Small. 2020 Jun;16(22):e1907139. doi: 10.1002/smll.201907139. Epub 2020 May 4.
Understanding viscosity in complex environments remains a largely unanswered question despite its importance in determining reaction rates in vivo. Here, time-resolved fluorescence anisotropy imaging (TR-FAIM) is combined with fluorescent molecular rotors (FMRs) to simultaneously determine two non-equivalent viscosity-related parameters in complex heterogeneous environments. The parameters, FMR rotational correlation time and lifetime, are extracted from fluorescence anisotropy decays, which in heterogeneous environments show dip-and-rise behavior due to multiple dye populations. Decays of this kind are found both in artificially constructed adiposomes and in live cell lipid droplet organelles. Molecular dynamics simulations are used to assign each population to nano-environments within the lipid systems. The less viscous population corresponds to the state showing an average 25° tilt to the lipid membrane normal, and the more viscous population to the state showing an average 55° tilt. This combined experimental and simulation approach enables a comprehensive description of the FMR probe behavior within viscous nano-environments in complex, biological systems.
尽管在体内确定反应速率时,黏度的重要性不言而喻,但要理解复杂环境中的黏度仍是一个悬而未决的问题。在这里,时间分辨荧光各向异性成像(TR-FAIM)与荧光分子转子(FMR)相结合,可在复杂的非均相环境中同时确定两个不等效的与黏度相关的参数。从荧光各向异性衰减中提取出 FMR 旋转相关时间和寿命这两个参数,在非均相环境中,由于多种染料群体的存在,荧光各向异性衰减会呈现出先下降后上升的趋势。这种衰减既存在于人工构建的脂肪小体中,也存在于活细胞脂质滴细胞器中。分子动力学模拟用于将每个群体分配到脂质系统内的纳米环境中。黏度较小的群体对应于平均向脂质膜法线倾斜 25°的状态,黏度较大的群体对应于平均向脂质膜法线倾斜 55°的状态。这种组合的实验和模拟方法可全面描述 FMR 探针在复杂生物系统中黏性纳米环境中的行为。