Shirmanova Marina V, Shimolina Lubov' E, Lukina Maria M, Zagaynova Elena V, Kuimova Marina K
Institute of Biomedical Technologies, Nizhny Novgorod State Medical Academy, Minin and Pozharsky Square, 10/1, Nizhny Novgorod, 603005, Russia.
Institute of Biology and Biomedicine, Nizhny Novgorod State University, Gagarin Avenue, 23, Nizhny Novgorod, 603950, Russia.
Adv Exp Med Biol. 2017;1035:143-153. doi: 10.1007/978-3-319-67358-5_10.
Abnormal levels of viscosity in tissues and cells are known to be associated with disease and malfunction. While methods to measure bulk macroscopic viscosity of bio-tissues are well developed, imaging viscosity at the microscopic scale remains a challenge, especially in vivo. Molecular rotors are small synthetic viscosity-sensitive fluorophores in which fluorescence parameters are strongly correlated to the microviscosity of their immediate environment. Hence, molecular rotors represent a promising instrument for mapping of viscosity in living cells and tissues at the microscopic level. Quantitative measurements of viscosity can be achieved by recording time-resolved fluorescence decays of molecular rotor using fluorescence lifetime imaging microscopy (FLIM), which is also suitable for dynamic viscosity mapping, both in cellulo and in vivo. Among tools of experimental oncology, 3D tumour cultures, or spheroids, are considered a more adequate in vitro model compared to a cellular monolayer, and represent a less labour-intensive and more unified approach compared to animal tumour models. This chapter describes a methodology for microviscosity imaging in tumour spheroids using BODIPY-based molecular rotors and two photon-excited FLIM.
已知组织和细胞中的异常粘度水平与疾病和功能障碍有关。虽然测量生物组织宏观粘度的方法已经很成熟,但在微观尺度上对粘度进行成像仍然是一个挑战,尤其是在体内。分子转子是一种小型合成的粘度敏感荧光团,其荧光参数与其周围环境的微粘度密切相关。因此,分子转子是在微观水平上绘制活细胞和组织中粘度图谱的一种有前途的工具。通过使用荧光寿命成像显微镜(FLIM)记录分子转子的时间分辨荧光衰减,可以实现粘度的定量测量,这也适用于细胞内和体内的动态粘度图谱绘制。在实验肿瘤学工具中,与细胞单层相比,3D肿瘤培养物或球体被认为是一种更合适的体外模型,并且与动物肿瘤模型相比,是一种劳动强度较小且更统一的方法。本章介绍了一种使用基于BODIPY的分子转子和双光子激发FLIM对肿瘤球体进行微粘度成像的方法。