Suppr超能文献

公共数据库(ChEMBL)中抗冠状病毒结构-活性信息的化学特征审计。

A Chemographic Audit of anti-Coronavirus Structure-activity Information from Public Databases (ChEMBL).

机构信息

Chemoinformatics Laboratory, UMR 7140 CNRS/University of Strasbourg, 4, rue Blaise Pascal, 67000, Strasbourg.

FSBSI "Chumakov FSC R&D IBP RAS", Poselok Instituta Poliomielita 8 bd. 1, Poselenie Moskovsky, Moscow, 108819, Russia.

出版信息

Mol Inform. 2020 Dec;39(12):e2000080. doi: 10.1002/minf.202000080. Epub 2020 May 14.

Abstract

Discovery of drugs against newly emerged pathogenic agents like the SARS-CoV-2 coronavirus (CoV) must be based on previous research against related species. Scientists need to get acquainted with and develop a global oversight over so-far tested molecules. Chemography (herein used Generative Topographic Mapping, in particular) places structures on a human-readable 2D map (obtained by dimensionality reduction of the chemical space of molecular descriptors) and is thus well suited for such an audit. The goal is to map medicinal chemistry efforts so far targeted against CoVs. This includes comparing libraries tested against various virus species/genera, predicting their polypharmacological profiles and highlighting often encountered chemotypes. Maps are challenged to provide predictive activity landscapes against viral proteins. Definition of "anti-CoV" map zones led to selection of therein residing 380 potential anti-CoV agents, out of a vast pool of 800 M organic compounds.

摘要

针对 SARS-CoV-2 冠状病毒(CoV)等新出现的病原体的药物发现必须基于之前针对相关物种的研究。科学家需要熟悉并对迄今为止经过测试的分子进行全球监督。化学地理学(此处特别使用生成拓扑映射)将结构放置在人类可读的 2D 图谱上(通过对分子描述符的化学空间进行降维获得),因此非常适合进行此类审核。目标是绘制迄今为止针对 CoV 进行药物化学研究的图谱。这包括比较针对各种病毒物种/属进行测试的文库,预测它们的多药理学特征,并突出经常遇到的化学型。图谱面临着针对病毒蛋白提供预测活性景观的挑战。“抗 CoV”图谱区域的定义导致从 8000 万种有机化合物的巨大池中选择了其中 380 种潜在的抗 CoV 药物。

相似文献

1
A Chemographic Audit of anti-Coronavirus Structure-activity Information from Public Databases (ChEMBL).
Mol Inform. 2020 Dec;39(12):e2000080. doi: 10.1002/minf.202000080. Epub 2020 May 14.
2
Current status of antivirals and druggable targets of SARS CoV-2 and other human pathogenic coronaviruses.
Drug Resist Updat. 2020 Dec;53:100721. doi: 10.1016/j.drup.2020.100721. Epub 2020 Aug 26.
3
Human coronaviruses and therapeutic drug discovery.
Infect Dis Poverty. 2021 Mar 16;10(1):28. doi: 10.1186/s40249-021-00812-9.
4
3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV-infected mice.
Sci Transl Med. 2020 Aug 19;12(557). doi: 10.1126/scitranslmed.abc5332. Epub 2020 Aug 3.
5
Discovering drugs to treat coronavirus disease 2019 (COVID-19).
Drug Discov Ther. 2020;14(1):58-60. doi: 10.5582/ddt.2020.01012.
8
Inhibition of coronavirus infection by a synthetic STING agonist in primary human airway system.
Antiviral Res. 2021 Mar;187:105015. doi: 10.1016/j.antiviral.2021.105015. Epub 2021 Jan 12.
9
The nucleocapsid protein of zoonotic betacoronaviruses is an attractive target for antiviral drug discovery.
Life Sci. 2021 Oct 1;282:118754. doi: 10.1016/j.lfs.2020.118754. Epub 2020 Nov 12.
10
Perspectives for repurposing drugs for the coronavirus disease 2019.
Indian J Med Res. 2020;151(2 & 3):160-171. doi: 10.4103/ijmr.IJMR_585_20.

引用本文的文献

1
EMBL's European Bioinformatics Institute (EMBL-EBI) in 2022.
Nucleic Acids Res. 2023 Jan 6;51(D1):D9-D17. doi: 10.1093/nar/gkac1098.
2
Pre-Steady-State Kinetics of the SARS-CoV-2 Main Protease as a Powerful Tool for Antiviral Drug Discovery.
Front Pharmacol. 2021 Dec 6;12:773198. doi: 10.3389/fphar.2021.773198. eCollection 2021.
3
The Omic Insights on Unfolding Saga of COVID-19.
Front Immunol. 2021 Oct 20;12:724914. doi: 10.3389/fimmu.2021.724914. eCollection 2021.
4
A critical overview of computational approaches employed for COVID-19 drug discovery.
Chem Soc Rev. 2021 Aug 21;50(16):9121-9151. doi: 10.1039/d0cs01065k. Epub 2021 Jul 2.
5
Progress on open chemoinformatic tools for expanding and exploring the chemical space.
J Comput Aided Mol Des. 2022 May;36(5):341-354. doi: 10.1007/s10822-021-00399-1. Epub 2021 Jun 18.
6
In silico Studies on the Interaction between Mpro and PLpro From SARS-CoV-2 and Ebselen, its Metabolites and Derivatives.
Mol Inform. 2021 Aug;40(8):e2100028. doi: 10.1002/minf.202100028. Epub 2021 May 21.
7
Repurposing Approved Drugs for Guiding COVID-19 Prophylaxis: A Systematic Review.
Front Pharmacol. 2020 Dec 14;11:590598. doi: 10.3389/fphar.2020.590598. eCollection 2020.

本文引用的文献

1
Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2.
Cell Discov. 2020 Mar 16;6:14. doi: 10.1038/s41421-020-0153-3. eCollection 2020.
2
Rapid Identification of Potential Inhibitors of SARS-CoV-2 Main Protease by Deep Docking of 1.3 Billion Compounds.
Mol Inform. 2020 Aug;39(8):e2000028. doi: 10.1002/minf.202000028. Epub 2020 Mar 23.
3
Discovering drugs to treat coronavirus disease 2019 (COVID-19).
Drug Discov Ther. 2020;14(1):58-60. doi: 10.5582/ddt.2020.01012.
4
(Q)SAR Models of HIV-1 Protein Inhibition by Drug-Like Compounds.
Molecules. 2019 Dec 25;25(1):87. doi: 10.3390/molecules25010087.
5
The Curious Case of the Nidovirus Exoribonuclease: Its Role in RNA Synthesis and Replication Fidelity.
Front Microbiol. 2019 Aug 7;10:1813. doi: 10.3389/fmicb.2019.01813. eCollection 2019.
7
Getting to Know the Neighbours with GTM: The Case of Antiviral Compounds.
Mol Inform. 2019 May;38(5):e1800166. doi: 10.1002/minf.201800166. Epub 2019 Feb 19.
8
Enhanced taxonomy annotation of antiviral activity data from ChEMBL.
Database (Oxford). 2019 Jan 1;2019:bay139. doi: 10.1093/database/bay139.
9
Multi-task generative topographic mapping in virtual screening.
J Comput Aided Mol Des. 2019 Mar;33(3):331-343. doi: 10.1007/s10822-019-00188-x. Epub 2019 Feb 9.
10
Virtual Screening with Generative Topographic Maps: How Many Maps Are Required?
J Chem Inf Model. 2019 Jan 28;59(1):564-572. doi: 10.1021/acs.jcim.8b00650. Epub 2018 Dec 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验