Suppr超能文献

电成型法制备巨型可生物降解聚乙二醇-聚己内酯聚合物囊泡。

Giant Biodegradable Poly(ethylene glycol)-block-Poly(ε-caprolactone) Polymersomes by Electroformation.

机构信息

Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, Siegen, 57076, Germany.

Macromolecular Chemistry, Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Str. 2, Siegen, 57076, Germany.

出版信息

Macromol Biosci. 2020 Jun;20(6):e2000014. doi: 10.1002/mabi.202000014. Epub 2020 May 3.

Abstract

Here, the formation of giant enzyme-degradable polymersomes using the electroformation method is reported. Poly(ethylene glycol)-block-poly(ε-caprolactone) polymersomes have been shown previously to be attractive candidates for the detection of bacterial proteases and protease mediated release of encapsulated reporter dyes and antimicrobials. To maximize the efficiency, the maximization of block copolymer (BCP) vesicle size without compromising their properties is of prime importance. Thus, the physical-chemical properties of the BCP necessary to self-assemble into polymeric vesicles by electroformation are first identified. Subsequently, the morphology of the self-assembled structures is extensively characterized by different microscopy techniques. The vesicular structures are visualized for giant polymersomes by confocal laser scanning microscopy upon incorporation of reporter dyes during the self-assembly process. Using time correlated single photon counting and by analyzing the fluorescence decay curves, the nanoenvironment of the encapsulated fluorophores is unveiled. Using this approach, the hollow core structure of the polymersomes is confirmed. Finally, the encapsulation of different dyes added during the electroformation process is studied. The results underline the potential of this approach for obtaining microcapsules for subsequent triggered release of signaling fluorophores or antimicrobially active cargo molecules that can be used for bacterial infection diagnostics and/or treatment.

摘要

本文报道了使用电成型法制备巨型可酶降解聚合物囊泡的方法。先前已经证明,聚(乙二醇)-嵌段-聚(ε-己内酯)聚合物囊泡是检测细菌蛋白酶和蛋白酶介导的包封报告染料和抗菌剂释放的有吸引力的候选物。为了提高效率,最大限度地提高嵌段共聚物(BCP)囊泡的大小而不影响其性质至关重要。因此,首先确定了通过电成型自组装成聚合物囊泡所需的 BCP 的物理化学性质。随后,通过不同的显微镜技术对自组装结构的形态进行了广泛的表征。通过在自组装过程中加入报告染料,通过共聚焦激光扫描显微镜对囊泡进行可视化。通过时间相关单光子计数并分析荧光衰减曲线,揭示了包封荧光团的纳米环境。使用这种方法,证实了聚合物囊泡的中空核结构。最后,研究了在电成型过程中添加的不同染料的包封。这些结果强调了这种方法在获得微胶囊以随后触发释放信号荧光团或抗菌有效载药分子方面的潜力,可用于细菌感染诊断和/或治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验