Kamphaus Ethan P, Gomez Stefany Angarita, Qin Xueping, Shao Minhua, Balbuena Perla B
Department of Chemical Engineering, Texas A&M University, College Station, Texas, 77843, United States.
Department of Chemical and Biological Engineering, HKUST, Clear Water Bay, Kowloon, Hong Kong, China.
Chemphyschem. 2020 Jun 16;21(12):1310-1317. doi: 10.1002/cphc.202000174. Epub 2020 May 25.
The use of a lithium metal anode still presents a challenging chemistry and engineering problem that holds back next generation lithium battery technology. One of the issues facing lithium metal is the presence of the solid electrolyte interphase (SEI) layer that forms on the electrode creating a variety of chemical species that change the properties of the electrode and is closely related to the formation and growth of lithium dendrites. In order to advance the scientific progress of lithium metal more must be understood about the fundamentals of the SEI. One property of the SEI that is particularly critical is the passivating behavior of the different SEI components. This property is critical to the continued formation of SEI and stability of the electrolyte and electrode. Here we report the investigation of the passivation behavior of Li O, Li CO LiF and LiOH with the lithium salt LiFSI. We used large computational chemistry models that are able to capture the lithium/SEI interface as well as the SEI/electrolyte interface. We determined that LiF and Li CO are the most passivating of the SEI layers, followed by LiOH and Li O. These results match previous studies of other Li salts and provide further examination of LiFSI reduction.
锂金属阳极的使用仍然存在具有挑战性的化学和工程问题,这阻碍了下一代锂电池技术的发展。锂金属面临的问题之一是在电极上形成的固体电解质界面(SEI)层,该层会产生多种化学物质,这些化学物质会改变电极的性能,并且与锂枝晶的形成和生长密切相关。为了推动锂金属的科学进展,必须对SEI的基本原理有更多的了解。SEI的一个特别关键的性质是不同SEI组分的钝化行为。这一性质对于SEI的持续形成以及电解质和电极的稳定性至关重要。在此,我们报告了LiO、Li₂CO₃、LiF和LiOH与锂盐LiFSI的钝化行为研究。我们使用了大型计算化学模型,该模型能够捕捉锂/SEI界面以及SEI/电解质界面。我们确定LiF和Li₂CO₃是最具钝化作用的SEI层,其次是LiOH和LiO。这些结果与之前对其他锂盐的研究结果相符,并进一步考察了LiFSI的还原情况。