Suppr超能文献

基于语义解析转换的非配对人物图像生成。

Unpaired Person Image Generation With Semantic Parsing Transformation.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2021 Nov;43(11):4161-4176. doi: 10.1109/TPAMI.2020.2992105. Epub 2021 Oct 1.

Abstract

In this paper, we tackle the problem of pose-guided person image generation with unpaired data, which is a challenging problem due to non-rigid spatial deformation. Instead of learning a fixed mapping directly between human bodies as previous methods, we propose a new pathway to decompose a single fixed mapping into two subtasks, namely, semantic parsing transformation and appearance generation. First, to simplify the learning for non-rigid deformation, a semantic generative network is developed to transform semantic parsing maps between different poses. Second, guided by semantic parsing maps, we render the foreground and background image, respectively. A foreground generative network learns to synthesize semantic-aware textures, and another background generative network learns to predict missing background regions caused by pose changes. Third, we enable pseudo-label training with unpaired data, and demonstrate that end-to-end training of the overall network further refines the semantic map prediction and final results accordingly. Moreover, our method is generalizable to other person image generation tasks defined on semantic maps, e.g., clothing texture transfer, controlled image manipulation, and virtual try-on. Experimental results on DeepFashion and Market-1501 datasets demonstrate the superiority of our method, especially in keeping better body shapes and clothing attributes, as well as rendering structure-coherent backgrounds.

摘要

在本文中,我们解决了使用非配对数据进行姿势引导的人像生成问题,这是一个具有挑战性的问题,因为存在非刚体的空间变形。与之前的方法直接学习人体之间的固定映射不同,我们提出了一种新的途径,可以将单一的固定映射分解为两个子任务,即语义解析转换和外观生成。首先,为了简化非刚体变形的学习,我们开发了一个语义生成网络,以在不同姿势之间转换语义解析图。其次,通过语义解析图指导,我们分别渲染前景和背景图像。一个前景生成网络学习合成语义感知纹理,另一个背景生成网络学习预测由于姿势变化而导致的缺失背景区域。第三,我们可以使用非配对数据进行伪标签训练,并证明整个网络的端到端训练可以进一步细化语义图预测,并相应地改进最终结果。此外,我们的方法可推广到其他基于语义图的人像生成任务,例如,服装纹理转换、控制图像操作和虚拟试穿。在 DeepFashion 和 Market-1501 数据集上的实验结果表明,我们的方法具有优越性,尤其是在保持更好的身体形状和服装属性以及渲染结构一致的背景方面。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验