Suppr超能文献

图谱学:通过图推理和迁移进行通用图像解析。

Graphonomy: Universal Image Parsing via Graph Reasoning and Transfer.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 May;44(5):2504-2518. doi: 10.1109/TPAMI.2020.3043268. Epub 2022 Apr 1.

Abstract

Prior highly-tuned image parsing models are usually studied in a certain domain with a specific set of semantic labels and can hardly be adapted into other scenarios (e.g.sharing discrepant label granularity) without extensive re-training. Learning a single universal parsing model by unifying label annotations from different domains or at various levels of granularity is a crucial but rarely addressed topic. This poses many fundamental learning challenges, e.g.discovering underlying semantic structures among different label granularity or mining label correlation across relevant tasks. To address these challenges, we propose a graph reasoning and transfer learning framework, named "Graphonomy," which incorporates human knowledge and label taxonomy into the intermediate graph representation learning beyond local convolutions. In particular, Graphonomy learns the global and structured semantic coherency in multiple domains via semantic-aware graph reasoning and transfer, enforcing the mutual benefits of the parsing across domains (e.g.different datasets or co-related tasks). The Graphonomy includes two iterated modules: Intra-Graph Reasoning and Inter-Graph Transfer modules. The former extracts the semantic graph in each domain to improve the feature representation learning by propagating information with the graph; the latter exploits the dependencies among the graphs from different domains for bidirectional knowledge transfer. We apply Graphonomy to two relevant but different image understanding research topics: human parsing and panoptic segmentation, and show Graphonomy can handle both of them well via a standard pipeline against current state-of-the-art approaches. Moreover, some extra benefit of our framework is demonstrated, e.g., generating the human parsing at various levels of granularity by unifying annotations across different datasets.

摘要

先前高度调整的图像解析模型通常在特定领域中进行研究,具有特定的语义标签集,并且如果没有广泛的重新训练,几乎无法适应其他场景(例如,共享不一致的标签粒度)。通过统一来自不同领域或不同粒度级别的标签注释来学习单个通用解析模型是一个关键但很少被关注的主题。这带来了许多基本的学习挑战,例如在不同标签粒度或跨相关任务挖掘标签相关性之间发现潜在的语义结构。为了解决这些挑战,我们提出了一种图推理和迁移学习框架,名为“Graphonomy”,它将人类知识和标签分类法纳入到局部卷积之外的中间图表示学习中。具体来说,Graphonomy 通过语义感知图推理和转移来学习多个领域的全局和结构化语义一致性,从而在跨领域的解析中实现相互受益(例如,不同数据集或相关任务)。Graphonomy 包括两个迭代模块:内部图推理和外部图转移模块。前者从每个领域提取语义图,通过图来改进特征表示学习;后者利用来自不同领域的图之间的依赖关系进行双向知识转移。我们将 Graphonomy 应用于两个相关但不同的图像理解研究主题:人体解析和全景分割,并通过与当前最先进方法相比的标准流水线证明 Graphonomy 可以很好地处理这两个主题。此外,还展示了我们框架的一些额外优势,例如通过统一来自不同数据集的注释来生成各种粒度级别的人体解析。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验