Suppr超能文献

通过铝纳米颗粒柱的分离实现组装还原氧化石墨烯中间层的超膨胀用于高容量钠离子电池阳极

Super-Expansion of Assembled Reduced Graphene Oxide Interlayers by Segregation of Al Nanoparticle Pillars for High-Capacity Na-Ion Battery Anodes.

作者信息

Pyo SeongJi, Eom Wonsik, Kim You Jin, Lee Sang Hoon, Han Tae Hee, Ryu Won-Hee

机构信息

Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea.

Department of Organic and Nano Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2020 May 27;12(21):23781-23788. doi: 10.1021/acsami.0c00659. Epub 2020 May 14.

Abstract

The applicability of Na-ion batteries is contingent on breakthroughs in alternative electrode materials that have high capacities and which are economically viable. Unfortunately, conventional graphite anodes for Li-ion battery systems do not allow Na-ion accommodation into their interlayer space owing to the large ionic radius and low stabilizing energy of Na in graphite. Here, we suggest a promising strategy for significantly increasing Na capacity by expanding the axial slab space of graphite. We successfully synthesized reconstructed graphite materials via self-assembly of negative graphite oxide (GO) flakes and Al cation (positive) pillars and by subsequent chemical reaction of the obtained Al-GO materials. Al pillars, atomically distributed in graphite interlayers, can extend the slab space by up to ∼7 Å, which is a 2-fold interlayer distance of pristine graphite. An exceptionally high capacity of 780 mAh/g is demonstrated for reconstructed graphite anodes with Al pillars, compared with rGO materials (210 mAh/g). We investigated the electrochemical reaction mechanism and structural changes associated with discharge and charge to emphasize the benefit of using reconstructed graphite as anodes in Na-ion batteries. Our strategy of modifying the interlayer distance by introducing metallic pillars between the layers can help address the low capacity of carbonaceous anodes.

摘要

钠离子电池的适用性取决于在具有高容量且经济可行的替代电极材料方面取得突破。不幸的是,由于钠离子在石墨中的离子半径大且稳定能低,锂离子电池系统中传统的石墨负极不允许钠离子嵌入其层间空间。在此,我们提出一种通过扩大石墨的轴向板层空间来显著提高钠容量的有前景的策略。我们通过负性氧化石墨(GO)薄片和铝阳离子(正性)柱的自组装以及随后对所得铝 - GO材料进行化学反应,成功合成了重构石墨材料。原子分布在石墨层间的铝柱可将板层空间扩展至约7 Å,这是原始石墨层间距的两倍。与rGO材料(210 mAh/g)相比,含铝柱的重构石墨负极展现出780 mAh/g的超高容量。我们研究了与充放电相关的电化学反应机理和结构变化,以强调使用重构石墨作为钠离子电池负极的优势。我们通过在层间引入金属柱来改变层间距的策略有助于解决碳质负极容量低的问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验