Suppr超能文献

用于钠离子电池的采用转化反应柱的膨胀石墨阳极的可控插入机制

Controllable Insertion Mechanism of Expanded Graphite Anodes Employing Conversion Reaction Pillars for Sodium-Ion Batteries.

作者信息

Kim Suji, Kim You Jin, Ryu Won-Hee

机构信息

Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea.

Institute of Advanced Materials and Systems, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul 04310, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2021 May 26;13(20):24070-24080. doi: 10.1021/acsami.1c05928. Epub 2021 May 14.

Abstract

Controlling the structural and reaction characteristics of carbonaceous anode materials is essential to realizing alternative alkali-ion batteries. In this study, we report on expanded graphite material employing MoS conversion reaction pillars (EG-MoS) inserted into the interlayers and assess them as potential anode candidates for Na-ion batteries. We succeed in a tailored control of the insertion characteristics between one-phase reaction and two-phase reaction by modifying the crystal structure of EG-MoS under different thermal treatment conditions. EG-MoS-900 anode with an enlarged interlayer of ∼5.38 Å delivers an exceptionally high capacity of 501 mAh g. We successfully solve the irreversible capacity issues of the expanded graphite materials by forming chemical preformation of the solid electrolyte interface (SEI) layer on the electrode surface, thereby significantly increasing coulombic efficiencies of thermally tuned EG-MoS (52.20 → 97.25%). We elucidate the electrochemical mechanism and structural properties of the EG-MoS anode materials by characterizations. Inserting active sulfide pillars enables us to overcome the performance limitations of existing Na-ion battery technologies, and we expect that this strategy will be applied to realize another family of alkali-ion batteries.

摘要

控制碳质负极材料的结构和反应特性对于实现替代碱离子电池至关重要。在本研究中,我们报道了采用插入层间的MoS转化反应柱的膨胀石墨材料(EG-MoS),并将其评估为钠离子电池的潜在负极候选材料。通过在不同热处理条件下改变EG-MoS的晶体结构,我们成功地对单相反应和两相反应之间的插入特性进行了定制控制。具有约5.38 Å扩大层间距的EG-MoS-900负极展现出501 mAh g的超高容量。我们通过在电极表面形成固体电解质界面(SEI)层的化学预形成,成功解决了膨胀石墨材料的不可逆容量问题,从而显著提高了热调谐EG-MoS的库仑效率(从52.20%提高到97.25%)。我们通过表征阐明了EG-MoS负极材料的电化学机理和结构特性。插入活性硫化物柱使我们能够克服现有钠离子电池技术的性能限制,并且我们期望这种策略将被应用于实现另一类碱离子电池。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验