Suppr超能文献

使用皮层内超高密度微电极阵列(超高密度 MEA)进行功能神经映射的原理。

Principles of functional neural mapping using an intracortical ultra-density microelectrode array (ultra-density MEA).

机构信息

Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, United States of America.

出版信息

J Neural Eng. 2020 Jun 22;17(3):036018. doi: 10.1088/1741-2552/ab8fc5.

Abstract

OBJECTIVE

Intracortical electrical neural recording using solid-state electrodes is a prevalent approach in addressing neurophysiological queries and implementing brain-computer interfacing systems. As a variety of ultra-density microelectrode arrays (ultra-density MEAs) are being created more recently, this paper answers to the rising demand for a more rigorous theory concerning this new type of neural electrode technology, both to guide the proper design and to inform the proper usage.

APPROACH

This design and use problem of ultra-density MEAs for functional intracortical neuronal circuit mapping is approached from a signal analysis perspective. Starting with quantitative derivations of key basic concepts, the concept of ultra-density MEA is defined in the context for fully resolving the voltage sources within its view volume. Then, the principle of using such an ultra-density MEA for functional neural mapping is elaborated, and a recursive approach to completely resolve all voltage sources from the ultra-density MEA's recordings is proposed. This approach is further validated using a simulated experiment. Last, the limitations and implications of this work are discussed.

MAIN RESULTS

MEAs can only be used to map the extracellular somatic action potential (esAP) sources in a neural microcircuit, and AP propagation along individual axons cannot be detected. The key for the ultra-density MEA design is to make sure that each spatial unit of analysis (SUA) contains no more than one active esAP source. The unique neural resolving capability of ultra-density MEAs comparing to conventional MEAs is to be able to spatiotemporally resolve each esAP source within its view volume.

SIGNIFICANCE

The ultimate capability and limitation of neural electrode array technology at such an unprecedented fabrication resolution is unraveled. This work strives to further the discussions on this topic into a more quantitative and rational direction, while providing a theoretical guideline for the rational development and neuroscientific application of an ultra-density MEA for intracortical functional mapping.

摘要

目的

使用固态电极进行皮层内电神经记录是解决神经生理学问题和实现脑机接口系统的一种流行方法。由于最近创建了各种超高密度微电极阵列(超高密度 MEAs),本文针对这种新型神经电极技术的需求,提供了更严格的理论解答,以指导正确的设计和使用。

方法

从信号分析的角度,针对超高密度 MEAs 用于功能皮层神经元电路映射的设计和使用问题进行研究。从定量推导关键基本概念开始,在完全解析其视场范围内电压源的背景下定义超高密度 MEA 的概念。然后,阐述了使用这种超高密度 MEA 进行功能神经映射的原理,并提出了一种递归方法,从超高密度 MEA 的记录中完全解析所有电压源。使用模拟实验进一步验证了该方法。最后,讨论了这项工作的局限性和意义。

主要结果

MEAs 只能用于映射神经微电路中的细胞外体动作电位(esAP)源,并且无法检测到 AP 沿单个轴突的传播。超高密度 MEA 设计的关键是确保每个空间分析单元(SUA)内不包含多个活跃的 esAP 源。与传统 MEAs 相比,超高密度 MEAs 的独特神经解析能力是能够在其视场内时空分辨每个 esAP 源。

意义

揭示了前所未有的制造分辨率下神经电极阵列技术的最终能力和限制。这项工作旨在将关于这个主题的讨论进一步推向更定量和更理性的方向,同时为超高密度 MEA 用于皮层内功能映射的理性开发和神经科学应用提供理论指导。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验