Suppr超能文献

通过气-液-固机制实现高质量单层MoSe晶体的超快成核与生长。

Ultrafast nucleation and growth of high-quality monolayer MoSe crystals via vapor-liquid-solid mechanism.

作者信息

Wang Wenfeng, Shu Haibo, Zhou Dong, Wang Jun, Chen Xiaoshuang

机构信息

College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, People's Republic of China.

出版信息

Nanotechnology. 2020 Aug 14;31(33):335601. doi: 10.1088/1361-6528/ab8fe2. Epub 2020 May 4.

Abstract

The controlled production of two-dimensional atomically thin transition metal dichalcogenides (TMDs) is fundamentally important for their device applications. However, the synthesis of large-area and high-quality TMD monolayers remains a challenge due to the lack of sufficient understanding of growth mechanisms, especially for the chemical vapor deposition (CVD). Here we report molten-salt assisted CVD growth of highly crystalline MoSe monolayers via a novel vapor-liquid-solid (VLS) mechanism. Our results show that the growth rate of the VLS-grown monolayer MoSe is about 40 times faster than that of MoSe grown via the vapor-solid (VS) mechanism, which makes the fabrication of 100 μm domains for ∼2 min and a uniform monolayer film within 5 min. The ultrafast growth of monolayer MoSe crystals benefits from the synergic effect of one-dimensional VLS growth and two-dimensional VS edge expansion. Moreover, these MoSe monolayers exhibit high crystal quality and enhanced photoluminescence due to efficient Se-vacancy repairing by the doping of halogen atoms. These findings provide a new understanding of MoSe growth and open up an opportunity for the rapid synthesis of high-quality TMD monolayers and heterostructures.

摘要

二维原子级薄过渡金属二硫属化物(TMDs)的可控生产对于其器件应用至关重要。然而,由于对生长机制缺乏足够的了解,特别是对于化学气相沉积(CVD),大面积高质量TMD单层的合成仍然是一个挑战。在此,我们报道了通过一种新型气-液-固(VLS)机制,熔盐辅助CVD生长高度结晶的MoSe单层。我们的结果表明,VLS生长的单层MoSe的生长速率比通过气-固(VS)机制生长的MoSe快约40倍,这使得在约2分钟内制造出100μm的区域,并在5分钟内形成均匀的单层膜成为可能。单层MoSe晶体的超快生长得益于一维VLS生长和二维VS边缘扩展的协同效应。此外,由于通过卤素原子掺杂有效修复了Se空位,这些MoSe单层表现出高晶体质量和增强的光致发光。这些发现为MoSe的生长提供了新的认识,并为高质量TMD单层和异质结构的快速合成开辟了机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验