Suppr超能文献

基于定量基础磁共振成像的预测模型在鉴别髓母细胞瘤与室管膜瘤中的作用。

The Role of Predictive Model Based on Quantitative Basic Magnetic Resonance Imaging in Differentiating Medulloblastoma from Ependymoma.

机构信息

Department of Radiology, Hanoi Medical University, Ha Noi, Vietnam

Department of Radiology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam.

出版信息

Anticancer Res. 2020 May;40(5):2975-2980. doi: 10.21873/anticanres.14277.

Abstract

BACKGROUND/AIM: Even though advanced magnetic resonance imaging (MRI) can effectively differentiate between medulloblastoma and ependymoma, it is not readily available throughout the world. This study aimed to investigate the role of simple quantified basic MRI sequences in the differentiation between medulloblastoma and ependymoma in children.

PATIENTS AND METHODS

The institutional review board approved this prospective study. The brain MRI protocol, including sagittal T1-weighted, axial T2-weighted, coronal fluid-attenuated inversion recovery, and axial T1-weighted with contrast enhancement (T1WCE) sequences, was assessed in 26 patients divided into two groups: Medulloblastoma (n=22) and ependymoma (n=4). The quantified region of interest (ROI) values of tumors and their ratios to parenchyma were compared between the two groups. Multivariate logistic regression analysis was utilized to find significant factors influencing the differential diagnosis between the two groups. A generalized estimating equation (GEE) was used to create the predictive model for the discrimination of medulloblastoma from ependymoma.

RESULTS

Multivariate logistic regression analysis showed that the T2- and T1WCE-ROI values of tumors and the ratios of T1WCE-ROI values to parenchyma were the most significant factors influencing the diagnosis between these two groups. GEE produced the model: y=e/(1+e) with predictor x=-8.773+0.012x - 0.032x - 13.228x, where x was the T2-weighted signal intensity (SI) of tumor, x the T1WCE SI of tumor, and x the T1WCE SI ratio of tumor to parenchyma. The sensitivity, specificity, and area under the curve of the GEE model were 77.3%, 100%, and 92%, respectively.

CONCLUSION

The GEE predictive model can discriminate between medulloblastoma and ependymoma clinically. Further research should be performed to validate these findings.

摘要

背景/目的:尽管高级磁共振成像(MRI)可以有效地区分髓母细胞瘤和室管膜瘤,但它在世界范围内并不能广泛应用。本研究旨在探讨简单量化基本 MRI 序列在儿童髓母细胞瘤和室管膜瘤鉴别中的作用。

患者和方法

本研究经机构审查委员会批准。评估了包括矢状 T1 加权、轴位 T2 加权、冠状液体衰减反转恢复和轴位 T1 加权增强(T1WCE)序列的脑 MRI 方案,将 26 名患者分为两组:髓母细胞瘤(n=22)和室管膜瘤(n=4)。比较两组肿瘤的感兴趣区(ROI)值及其与实质的比值。利用多元逻辑回归分析寻找影响两组鉴别诊断的显著因素。广义估计方程(GEE)用于创建鉴别髓母细胞瘤与室管膜瘤的预测模型。

结果

多元逻辑回归分析显示,肿瘤的 T2 和 T1WCE-ROI 值以及 T1WCE-ROI 值与实质的比值是影响两组诊断的最显著因素。GEE 生成了模型:y=e/(1+e),其中预测因子 x=-8.773+0.012x-0.032x-13.228x,x 是肿瘤的 T2 加权信号强度(SI),x 是肿瘤的 T1WCE SI,x 是肿瘤与实质的 T1WCE SI 比值。GEE 模型的灵敏度、特异度和曲线下面积分别为 77.3%、100%和 92%。

结论

GEE 预测模型可用于临床鉴别髓母细胞瘤和室管膜瘤。需要进一步研究来验证这些发现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验