Suppr超能文献

一种用于识别乳腺癌和黑色素瘤中上皮-间质转化状态指标的无监督策略。

An Unsupervised Strategy for Identifying Epithelial-Mesenchymal Transition State Metrics in Breast Cancer and Melanoma.

作者信息

Klinke David J, Torang Arezo

机构信息

Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, USA; Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, USA; WVU Cancer Institute, West Virginia University, Morgantown, WV, USA.

Amsterdam UMC, University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam, the Netherlands; Oncode Institute, UMC, University of Amsterdam, Amsterdam, the Netherlands.

出版信息

iScience. 2020 May 22;23(5):101080. doi: 10.1016/j.isci.2020.101080. Epub 2020 Apr 22.

Abstract

Digital cytometry aims to identify different cell types in the tumor microenvironment, with the current focus on immune cells. Yet, identifying how changes in tumor cell phenotype, such as the epithelial-mesenchymal transition, influence the immune contexture is emerging as an important question. To extend digital cytometry, we developed an unsupervised feature extraction and selection strategy to capture functional plasticity tailored to breast cancer and melanoma separately. Specifically, principal component analysis coupled with resampling helped develop gene expression-based state metrics that characterize differentiation within an epithelial to mesenchymal-like state space and independently correlate with metastatic potential. First developed using cell lines, the orthogonal state metrics were refined to exclude the contributions of normal fibroblasts and provide tissue-level state estimates using bulk tissue RNA-seq measures. The resulting metrics for differentiation state aim to inform a more holistic view of how the malignant cell phenotype influences the immune contexture within the tumor microenvironment.

摘要

数字细胞术旨在识别肿瘤微环境中的不同细胞类型,目前主要关注免疫细胞。然而,确定肿瘤细胞表型的变化(如上皮-间质转化)如何影响免疫结构正在成为一个重要问题。为了扩展数字细胞术,我们开发了一种无监督特征提取和选择策略,以分别捕获针对乳腺癌和黑色素瘤的功能可塑性。具体而言,主成分分析与重采样相结合,有助于开发基于基因表达的状态指标,这些指标可表征上皮样到间充质样状态空间内的分化,并与转移潜能独立相关。最初使用细胞系开发的正交状态指标经过优化,以排除正常成纤维细胞的贡献,并使用批量组织RNA测序测量提供组织水平的状态估计。由此产生的分化状态指标旨在更全面地了解恶性细胞表型如何影响肿瘤微环境中的免疫结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fc5/7200934/d772d6a4fe62/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验