Suppr超能文献

昼行鼠锥状细胞视觉的光谱灵敏度。

Spectral sensitivity of cone vision in the diurnal murid .

机构信息

Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK

Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.

出版信息

J Exp Biol. 2020 May 29;223(Pt 11):jeb215368. doi: 10.1242/jeb.215368.

Abstract

An animal's temporal niche - the time of day at which it is active - is known to drive a variety of adaptations in the visual system. These include variations in the topography, spectral sensitivity and density of retinal photoreceptors, and changes in the eye's gross anatomy and spectral transmission characteristics. We have characterised visual spectral sensitivity in the murid rodent (the four-striped grass mouse), which is in the same family as (nocturnal) mice and rats but exhibits a strong diurnal niche. As is common in diurnal species, the lens acts as a long-pass spectral filter, providing limited transmission of light <400 nm. Conversely, we found strong sequence homologies with the SWS and MWS opsins and those of related nocturnal species (mice and rats) whose SWS opsins are maximally sensitive in the near-UV. We continued to assess spectral sensitivity of cone vision using electroretinography and multi-channel recordings from the visual thalamus. These revealed that responses across the human visible range could be adequately described by those of a single pigment (assumed to be MWS opsin) maximally sensitive at ∼500 nm, but that sensitivity in the near-UV required inclusion of a second pigment whose peak sensitivity lay well into the UV range (λ<400 nm, probably ∼360 nm). We therefore conclude that, despite the UV-filtering effects of the lens, retains an SWS pigment with a UV-A λ In effect, this somewhat paradoxical combination of long-pass lens and UV-A λ results in narrow-band sensitivity for SWS cone pathways in the UV-A range.

摘要

动物的时间生态位(即活跃时间)已知会驱动视觉系统的多种适应性变化。这些变化包括视网膜光感受器的拓扑结构、光谱灵敏度和密度的变化,以及眼睛的大体解剖结构和光谱传输特性的变化。我们已经描述了(夜行性)鼠科动物中的默氏鼠(四纹草鼠)的视觉光谱灵敏度,它与鼠科动物同属一科,但表现出强烈的昼行性生态位。与昼行性物种常见的情况一样,晶状体充当长通光谱滤波器,对<400nm 的光提供有限的传输。相反,我们发现与 SWS 和 MWS 视蛋白以及相关夜行性物种(鼠和大鼠)的视蛋白具有很强的序列同源性,它们的 SWS 视蛋白在近紫外光区具有最大灵敏度。我们继续使用视网膜电图和来自视觉丘脑的多通道记录来评估视锥视觉的光谱灵敏度。这些发现表明,跨人类可见范围的反应可以用单一色素(假定为 MWS 视蛋白)的反应来充分描述,该色素在∼500nm 处具有最大灵敏度,但在近紫外光区需要包含第二个色素,其峰值灵敏度位于紫外光区(λ<400nm,可能在∼360nm)。因此,我们得出结论,尽管晶状体具有 UV 过滤效应,但默氏鼠仍然保留了一种具有 UV-A λ 的 SWS 色素。实际上,这种长通透镜和 UV-A λ 的有些矛盾的组合导致 SWS 视锥途径在 UV-A 范围内具有窄带灵敏度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18d9/7272338/fb9a548158b9/jexbio-223-215368-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验