Public Health Risk Sciences Division, Public Health Agency of Canada, Toronto, Ontario, Canada
Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
BMJ Open. 2020 May 5;10(5):e035867. doi: 10.1136/bmjopen-2019-035867.
The present study evaluates the extent of association between hepatitis C virus (HCV) infection and cardiovascular disease (CVD) risk and identifies factors mediating this relationship using Bayesian network (BN) analysis.
A population-based cross-sectional survey in Canada.
Adults from the Canadian Health Measures Survey (=10 115) aged 30 to 74 years.
The 10-year risk of CVD was determined using the Framingham Risk Score in HCV-positive and HCV-negative subjects. Using BN analysis, variables were modelled to calculate the probability of CVD risk in HCV infection.
When the BN is compiled, and no variable has been instantiated, 73%, 17% and 11% of the subjects had low, moderate and high 10-year CVD risk, respectively. The conditional probability of high CVD risk increased to 13.9%±1.6% (p<2.2×10) when the HCV variable is instantiated to 'Present' state and decreased to 8.6%±0.2% when HCV was instantiated to 'Absent' (p<2.2×10). HCV cases had 1.6-fold higher prevalence of high-CVD risk compared with non-infected individuals (p=0.038). Analysis of the effect modification of the HCV-CVD relationship (using median Kullback-Leibler divergence; ) showed diabetes as a major effect modifier on the joint probability distribution of HCV infection and CVD risk =0.27, IQR: 0.26 to 0.27), followed by hypertension (0.24, IQR: 0.23 to 0.25), age (0.21, IQR: 0.10 to 0.38) and injection drug use (0.19, IQR: 0.06 to 0.59).
Exploring the relationship between HCV infection and CVD risk using BN modelling analysis revealed that the infection is associated with elevated CVD risk. A number of risk modifiers were identified to play a role in this relationship. Targeting these factors during the course of infection to reduce CVD risk should be studied further.
本研究评估丙型肝炎病毒 (HCV) 感染与心血管疾病 (CVD) 风险之间的关联程度,并使用贝叶斯网络 (BN) 分析确定介导这种关系的因素。
加拿大的一项基于人群的横断面调查。
年龄在 30 至 74 岁的加拿大健康测量调查 (=10115) 成年人。
在 HCV 阳性和 HCV 阴性受试者中,使用 Framingham 风险评分确定 10 年 CVD 风险。使用 BN 分析,对变量进行建模,以计算 HCV 感染中 CVD 风险的概率。
当 BN 被编译并且没有变量被实例化时,分别有 73%、17%和 11%的受试者具有低、中、高 10 年 CVD 风险。当 HCV 变量被实例化为“存在”状态时,高 CVD 风险的条件概率增加到 13.9%±1.6%(p<2.2×10),而当 HCV 被实例化为“不存在”时,风险降低到 8.6%±0.2%(p<2.2×10)。与未感染者相比,HCV 病例的高 CVD 风险患病率高 1.6 倍(p=0.038)。对 HCV-CVD 关系的效应修饰(使用中位数 Kullback-Leibler 分歧; )的分析表明,糖尿病是 HCV 感染和 CVD 风险联合概率分布的主要效应修饰因子(=0.27,IQR:0.26 至 0.27),其次是高血压(0.24,IQR:0.23 至 0.25)、年龄(0.21,IQR:0.10 至 0.38)和注射吸毒(0.19,IQR:0.06 至 0.59)。
使用 BN 建模分析探索 HCV 感染与 CVD 风险之间的关系表明,感染与 CVD 风险升高有关。确定了一些风险修饰因子在这种关系中发挥作用。在感染过程中针对这些因素以降低 CVD 风险应进一步研究。