Department of Otolaryngology Head and Neck Surgery, Stanford School of Medicine, Stanford University, Stanford, California 94305.
Oregon Hearing Research Center, Oregon Health and Science University, Portland, Oregon 97239.
J Neurosci. 2020 Jun 3;40(23):4457-4468. doi: 10.1523/JNEUROSCI.0163-20.2020. Epub 2020 May 5.
Detection of sound and head movement requires mechanoelectrical transduction (MET) channels at tips of hair-cell stereocilia. In vertebrates, the transmembrane channel-like (TMC) proteins TMC1 and TMC2 fulfill critical roles in MET, and substantial evidence implicates these TMCs as subunits of the MET channel. To identify developmental and functional roles of this Tmc subfamily in the zebrafish inner ear, we tested the effects of truncating mutations in , , and on mechanosensation at the onset of hearing and balance, before gender differentiation. We find that triple-mutant larvae cannot detect sound or orient with respect to gravity. They lack acoustic-evoked behavioral responses, vestibular-induced eye movements, and hair-cell activity as assessed with FM dye labeling and microphonic potentials. Despite complete loss of hair-cell function, triple-mutant larvae retain normal gross morphology of hair bundles and proper trafficking of known MET components Protocadherin 15a (Pcdh15a), Lipoma HMGIC fusion partner-like 5 (Lhfpl5), and Transmembrane inner ear protein (Tmie). Transgenic, hair cell-specific expression of Tmc2b-mEGFP rescues the behavioral and physiological deficits in triple mutants. Results from single and double mutants evince a principle role for Tmc2a and Tmc2b in hearing and balance, respectively, whereas Tmc1 has lower overall impact. Our experiments reveal that, in developing cristae, hair cells stratify into an upper, Tmc2a-dependent layer of teardrop-shaped cells and a lower, Tmc1/2b-dependent tier of gourd-shaped cells. Collectively, our genetic evidence indicates that auditory/vestibular end organs and subsets of hair cells therein rely on distinct combinations of Tmc1/2a/2b. We assessed the effects of truncation mutations on mechanoelectrical transduction (MET) in the inner-ear hair cells of larval zebrafish. triple mutants lacked behavioral responses to sound and head movements, while further assays demonstrated no observable mechanosensitivity in the triple mutant inner ear. Examination of double mutants revealed major contributions from Tmc2a and Tmc2b to macular function; however, Tmc1 had less overall impact. FM labeling of lateral cristae in double mutants revealed the presence of two distinct cell types, an upper layer of teardrop-shaped cells that rely on Tmc2a, and a lower layer of gourd-shaped cells that rely on Tmc1/2b.
检测声音和头部运动需要毛细胞静纤毛尖端的机电转换(MET)通道。在脊椎动物中,跨膜通道样(TMC)蛋白 TMC1 和 TMC2 在 MET 中起着关键作用,大量证据表明这些 TMC 是 MET 通道的亚基。为了确定斑马鱼内耳中 Tmc 亚家族的发育和功能作用,我们测试了截断突变在 、 和 对听觉和平衡的机械敏感性的影响,在性别分化之前。我们发现 三重突变体幼虫不能检测声音或相对于重力定向。它们缺乏声诱发的行为反应、前庭诱导的眼球运动以及用 FM 染料标记和微音电位评估的毛细胞活性。尽管毛细胞功能完全丧失,但 三重突变体幼虫保留了毛细胞束的正常大体形态和已知 MET 成分原钙黏蛋白 15a(Pcdh15a)、脂肪组织 HMGIC 融合伙伴样 5(Lhfpl5)和跨膜内耳蛋白(Tmie)的正常运输。Tmc2b-mEGFP 的转基因、毛细胞特异性表达挽救了 三重突变体的行为和生理缺陷。 单突变体和双突变体的结果表明 Tmc2a 和 Tmc2b 分别在听觉和平衡中起主要作用,而 Tmc1 的总体影响较低。我们的实验表明,在发育中的嵴中,毛细胞分层为上层,依赖 Tmc2a 的泪滴形细胞层和下层,依赖 Tmc1/2b 的葫芦形细胞层。总的来说,我们的遗传证据表明,听觉/前庭终器及其内部的毛细胞亚群依赖于不同的 Tmc1/2a/2b 组合。我们评估了 截断突变对幼虫斑马鱼内耳毛细胞机电转导(MET)的影响。三重突变体缺乏对声音和头部运动的行为反应,而进一步的测定表明三重突变体内耳没有可观察到的机械敏感性。对 双突变体的检查表明 Tmc2a 和 Tmc2b 对黄斑功能有重大贡献;然而,Tmc1 的总体影响较小。双突变体侧嵴的 FM 标记显示存在两种不同的细胞类型,一种是依赖 Tmc2a 的泪滴形细胞上层,另一种是依赖 Tmc1/2b 的葫芦形细胞下层。