Suppr超能文献

HAT1表达缺失通过IGF1R激活MAPK信号通路,赋予黑色素瘤细胞对BRAFV600E抑制剂的抗性。

Loss of HAT1 expression confers BRAFV600E inhibitor resistance to melanoma cells by activating MAPK signaling via IGF1R.

作者信息

Bugide Suresh, Parajuli Keshab Raj, Chava Suresh, Pattanayak Rudradip, Manna Deborah L Della, Shrestha Deepmala, Yang Eddy S, Cai Guoping, Johnson Douglas B, Gupta Romi

机构信息

Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35322, USA.

Department of Radiation Oncology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35322, USA.

出版信息

Oncogenesis. 2020 May 5;9(5):44. doi: 10.1038/s41389-020-0228-x.

Abstract

BRAF inhibitors (BRAFi) have been approved for the clinical treatment of BRAF-mutant metastatic melanoma. Although initial responses to BRAFi are generally favorable, acquired BRAFi resistance emerges rapidly, resulting in treatment failure. Only some of the underlying mechanisms responsible for BRAFi resistance are currently understood. Here, we showed that the genetic inhibition of histone acetyltransferase 1 (HAT1) in BRAF-mutant melanoma cells resulted in BRAFi resistance. Using quantitative immunofluorescence analysis of patient sample pairs, consisting of pre-treatment along with matched progressed BRAFi + MEKi-treated melanoma samples, HAT1 downregulation was observed in 7/11 progressed samples (~63%) in comparison with pre-treated samples. Employing NanoString-based nCounter PanCancer Pathway Panel-based gene expression analysis, we identified increased MAPK, Ras, transforming growth factor (TGF)-β, and Wnt pathway activation in HAT1 expression inhibited cells. We further found that MAPK pathway activation following the loss of HAT1 expression was partially driven by increased insulin growth factor 1 receptor (IGF1R) signaling. We showed that both MAPK and IGF1R pathway inhibition, using the ERK inhibitor SCH772984 and the IGF1R inhibitor BMS-754807, respectively, restored BRAFi sensitivity in melanoma cells lacking HAT1. Collectively, we show that the loss of HAT1 expression confers acquired BRAFi resistance by activating the MAPK signaling pathway via IGF1R.

摘要

BRAF抑制剂(BRAFi)已被批准用于BRAF突变转移性黑色素瘤的临床治疗。尽管对BRAFi的初始反应通常良好,但获得性BRAFi耐药性迅速出现,导致治疗失败。目前仅了解部分导致BRAFi耐药的潜在机制。在此,我们表明,BRAF突变黑色素瘤细胞中组蛋白乙酰转移酶1(HAT1)的基因抑制导致BRAFi耐药。通过对患者样本对进行定量免疫荧光分析,这些样本对包括治疗前以及匹配的接受BRAFi + MEKi治疗后病情进展的黑色素瘤样本,与治疗前样本相比,在11个病情进展样本中有7个(约63%)观察到HAT1下调。利用基于NanoString的nCounter泛癌通路面板的基因表达分析,我们发现在HAT1表达受抑制的细胞中,丝裂原活化蛋白激酶(MAPK)、Ras、转化生长因子(TGF)-β和Wnt通路的激活增加。我们进一步发现,HAT1表达缺失后MAPK通路的激活部分是由胰岛素生长因子1受体(IGF1R)信号增强驱动的。我们表明,分别使用ERK抑制剂SCH772984和IGF1R抑制剂BMS-754807抑制MAPK和IGF1R通路,可恢复缺乏HAT1的黑色素瘤细胞对BRAFi的敏感性。总体而言,我们表明HAT1表达缺失通过IGF1R激活MAPK信号通路赋予获得性BRAFi耐药性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f28b/7200761/ef44f4be1c4f/41389_2020_228_Fig1_HTML.jpg

相似文献

2
Loss of BOP1 confers resistance to BRAF kinase inhibitors in melanoma by activating MAP kinase pathway.
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4583-4591. doi: 10.1073/pnas.1821889116. Epub 2019 Feb 19.
3
ER Translocation of the MAPK Pathway Drives Therapy Resistance in BRAF-Mutant Melanoma.
Cancer Discov. 2019 Mar;9(3):396-415. doi: 10.1158/2159-8290.CD-18-0348. Epub 2018 Dec 18.
4
Activity and Resistance of a Brain-Permeable Paradox Breaker BRAF Inhibitor in Melanoma Brain Metastasis.
Cancer Res. 2022 Jul 18;82(14):2552-2564. doi: 10.1158/0008-5472.CAN-21-4152.
5
Targeted BRAF inhibition impacts survival in melanoma patients with high levels of Wnt/β-catenin signaling.
PLoS One. 2014 Apr 14;9(4):e94748. doi: 10.1371/journal.pone.0094748. eCollection 2014.
6
BRAF Inhibitor Resistance Confers Increased Sensitivity to Mitotic Inhibitors.
Front Oncol. 2022 Apr 4;12:766794. doi: 10.3389/fonc.2022.766794. eCollection 2022.
7
The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition.
Clin Cancer Res. 2013 Feb 1;19(3):598-609. doi: 10.1158/1078-0432.CCR-12-2731. Epub 2012 Oct 24.
9
Neratinib, a pan ERBB/HER inhibitor, restores sensitivity of -null, melanoma to BRAF/MEK inhibition.
Front Oncol. 2024 May 16;14:1191217. doi: 10.3389/fonc.2024.1191217. eCollection 2024.
10
Anaplastic Lymphoma Kinase Confers Resistance to BRAF Kinase Inhibitors in Melanoma.
iScience. 2019 Jun 28;16:453-467. doi: 10.1016/j.isci.2019.06.001. Epub 2019 Jun 8.

引用本文的文献

1
Role of exosomes in transforming growth factor-β-mediated cancer cell plasticity and drug resistance.
Explor Target Antitumor Ther. 2025 Jun 5;6:1002322. doi: 10.37349/etat.2025.1002322. eCollection 2025.
2
TGFβ signaling sensitizes MEKi-resistant human melanoma to targeted therapy-induced apoptosis.
Cell Death Dis. 2024 Dec 21;15(12):925. doi: 10.1038/s41419-024-07305-1.
3
TGF-β Modulated Pathways in Colorectal Cancer: New Potential Therapeutic Opportunities.
Int J Mol Sci. 2024 Jul 5;25(13):7400. doi: 10.3390/ijms25137400.
5
Deep learning untangles the resistance mechanism of p53 reactivator in lung cancer cells.
iScience. 2023 Nov 1;26(12):108377. doi: 10.1016/j.isci.2023.108377. eCollection 2023 Dec 15.
6
Understanding HAT1: A Comprehensive Review of Noncanonical Roles and Connection with Disease.
Genes (Basel). 2023 Apr 14;14(4):915. doi: 10.3390/genes14040915.
7
HAT1: Landscape of Biological Function and Role in Cancer.
Cells. 2023 Apr 2;12(7):1075. doi: 10.3390/cells12071075.
8
TGF-β Signaling Activation Confers Anlotinib Resistance in Gastric Cancer.
Pharm Res. 2023 Mar;40(3):689-699. doi: 10.1007/s11095-022-03461-1. Epub 2022 Dec 20.
9
Conquering oncogenic KRAS and its bypass mechanisms.
Theranostics. 2022 Jul 18;12(13):5691-5709. doi: 10.7150/thno.71260. eCollection 2022.
10
Changes in the Transcriptome and Chromatin Landscape in BRAFi-Resistant Melanoma Cells.
Front Oncol. 2022 Jun 17;12:937831. doi: 10.3389/fonc.2022.937831. eCollection 2022.

本文引用的文献

1
Synergistic inhibition of MEK and reciprocal feedback networks for targeted intervention in malignancy.
Cancer Biol Med. 2019 Aug;16(3):415-434. doi: 10.20892/j.issn.2095-3941.2019.0137.
2
Key actors in cancer therapy: epigenetic modifiers.
Turk J Biol. 2019 Jun 13;43(3):155-170. doi: 10.3906/biy-1903-39. eCollection 2019.
3
HAT1 Coordinates Histone Production and Acetylation via H4 Promoter Binding.
Mol Cell. 2019 Aug 22;75(4):711-724.e5. doi: 10.1016/j.molcel.2019.05.034. Epub 2019 Jul 2.
4
CRISPR/Cas9-based knockout pipeline for reverse genetics in mammalian cell culture.
Methods. 2019 Jul 15;164-165:49-58. doi: 10.1016/j.ymeth.2019.04.016. Epub 2019 Apr 30.
5
Guidelines for optimized gene knockout using CRISPR/Cas9.
Biotechniques. 2019 Jun;66(6):295-302. doi: 10.2144/btn-2018-0187. Epub 2019 May 1.
6
Ras-ERK1/2 signalling promotes the development of osteosarcoma through regulation of H4K12ac through HAT1.
Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):1207-1215. doi: 10.1080/21691401.2019.1593857.
7
Loss of BOP1 confers resistance to BRAF kinase inhibitors in melanoma by activating MAP kinase pathway.
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4583-4591. doi: 10.1073/pnas.1821889116. Epub 2019 Feb 19.
8
Targeting Alterations in the RAF-MEK Pathway.
Cancer Discov. 2019 Mar;9(3):329-341. doi: 10.1158/2159-8290.CD-18-1321. Epub 2019 Feb 15.
9
Targeting ERK, an Achilles' Heel of the MAPK pathway, in cancer therapy.
Acta Pharm Sin B. 2018 Jul;8(4):552-562. doi: 10.1016/j.apsb.2018.01.008. Epub 2018 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验