Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710129, China.
Soft Matter. 2020 May 28;16(20):4756-4766. doi: 10.1039/d0sm00207k. Epub 2020 May 6.
Thermoresponsive hydrogels have been studied intensively for creating smart drug carriers and controlled drug delivery. Understanding the drug release kinetics and corresponding transport mechanisms of nanoparticles (NPs) in a thermoresponsive hydrogel network is the key to the successful design of smart drug delivery systems. We construct a mesoscopic model of rigid NPs entrapped in a hydrogel network in an aqueous solution, where the hydrogel network is formed by cross-linked semiflexible polymers of thermoresponsive poly(N-isopropylacrylamide) (PNIPAM). By varying the temperature crossing the lower critical solution temperature of PNIPAM, we can significantly change the hydrogel network characteristics. We systematically investigate how the matrix porosity and the nanoparticle size affect the transport kinetics of NPs at different temperatures. Quantitative results on the mean-squared displacement and the van Hove displacement distributions of NPs show that all NPs entrapped in the smart hydrogels undergo subdiffusion at both low and high temperatures. For a coil state, the transport of NPs in the hydrogels can be enhanced by decreasing the matrix porosity of the polymer network and NPs' size. However, when the solution temperature is increased above the critical temperature, the hydrogel network collapses following the coil-to-globule transition, with the NPs tightly trapped in some local regions inside the hydrogels. Consequently, the NP diffusion coefficient can be reduced by two orders of magnitude, or the diffusion processes can even be completely stopped. These findings provide new insights for designing controlled drug release from stimuli-responsive hydrogels, including autonomously switch on/off drug release in response to physical and chemical stimuli.
温敏水凝胶因其能够构建智能药物载体和控制药物释放而受到广泛关注。理解纳米颗粒(NPs)在温敏水凝胶网络中的药物释放动力学和相应的传输机制是成功设计智能药物输送系统的关键。我们构建了刚性 NPs 被包埋在水凝胶网络中的介观模型,其中水凝胶网络是由温敏聚(N-异丙基丙烯酰胺)(PNIPAM)的交联半柔性聚合物形成的。通过改变温度使其跨越 PNIPAM 的低临界溶液温度,可以显著改变水凝胶网络的特性。我们系统地研究了基质孔隙率和纳米颗粒尺寸如何在不同温度下影响 NPs 的传输动力学。NPs 的均方位移和范霍夫位移分布的定量结果表明,所有包埋在智能水凝胶中的 NPs 在低温和高温下都经历亚扩散。对于线圈状态,通过降低聚合物网络的基质孔隙率和 NPs 的尺寸,可以增强 NPs 在水凝胶中的传输。然而,当溶液温度升高到临界温度以上时,水凝胶网络会随着从线圈到球的转变而坍塌,NPs 被紧紧地困在水凝胶的一些局部区域内。因此,NPs 的扩散系数可以降低两个数量级,或者扩散过程甚至可以完全停止。这些发现为设计响应性刺激的水凝胶的控制药物释放提供了新的见解,包括响应物理和化学刺激自动开启/关闭药物释放。