Suppr超能文献

N-端修饰的 CXCL12 趋化因子在 CXCR4 和 ACKR3 受体上的差异活性和选择性。

Differential activity and selectivity of N-terminal modified CXCL12 chemokines at the CXCR4 and ACKR3 receptors.

机构信息

Université Paris-Saclay, INSERM, Inflammation, Microbiome and Immunosurveillance, Clamart, France.

Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France.

出版信息

J Leukoc Biol. 2020 Jun;107(6):1123-1135. doi: 10.1002/JLB.2MA0320-383RR. Epub 2020 May 6.

Abstract

Chemokines play critical roles in numerous physiologic and pathologic processes through their action on seven-transmembrane (TM) receptors. The N-terminal domain of chemokines, which is a key determinant of signaling via its binding within a pocket formed by receptors' TM helices, can be the target of proteolytic processing. An illustrative case of this regulatory mechanism is the natural processing of CXCL12 that generates chemokine variants lacking the first two N-terminal residues. Whereas such truncated variants behave as antagonists of CXCR4, the canonical G protein-coupled receptor of CXCL12, they are agonists of the atypical chemokine receptor 3 (ACKR3/CXCR7), suggesting the implication of different structural determinants in the complexes formed between CXCL12 and its two receptors. Recent analyses have suggested that the CXCL12 N-terminus first engages the TM helices of ACKR3 followed by the receptor N-terminus wrapping around the chemokine core. Here we investigated the first stage of ACKR3-CXCL12 interactions by comparing the activity of substituted or N-terminally truncated variants of CXCL12 toward CXCR4 and ACKR3. We showed that modification of the first two N-terminal residues of the chemokine (K1R or P2G) does not alter the ability of CXCL12 to activate ACKR3. Our results also identified the K1R variant as a G protein-biased agonist of CXCR4. Comparative molecular dynamics simulations of the complexes formed by ACKR3 either with CXCL12 or with the P2G variant identified interactions between the N-terminal 2-4 residues of CXCL12 and a pocket formed by receptor's TM helices 2, 6, and 7 as critical determinants for ACKR3 activation.

摘要

趋化因子通过与七跨膜(TM)受体结合在受体 TM 螺旋形成的口袋内发挥作用,在许多生理和病理过程中发挥关键作用。趋化因子的 N 端结构域是通过其与受体 TM 螺旋结合来决定信号转导的关键决定因素,可作为蛋白水解加工的靶点。这种调节机制的一个典型例子是 CXCL12 的天然加工,它产生缺乏前两个 N 端残基的趋化因子变体。虽然这种截断变体作为 CXCR4 的拮抗剂,即 CXCL12 的典型 G 蛋白偶联受体,但它们是趋化因子受体 3(ACKR3/CXCR7)的激动剂,表明不同的结构决定因素在 CXCL12 与其两个受体形成的复合物中发挥作用。最近的分析表明,CXCL12 N 端首先与 ACKR3 的 TM 螺旋结合,然后受体 N 端围绕趋化因子核心缠绕。在这里,我们通过比较 CXCL12 对 CXCR4 和 ACKR3 的取代或 N 端截断变体的活性,研究了 ACKR3-CXCL12 相互作用的第一阶段。我们表明,修饰趋化因子的前两个 N 端残基(K1R 或 P2G)不会改变 CXCL12 激活 ACKR3 的能力。我们的结果还确定了 K1R 变体是 CXCR4 的 G 蛋白偏向激动剂。与 ACKR3 形成的复合物的比较分子动力学模拟,无论是与 CXCL12 还是与 P2G 变体形成的复合物,都确定了 CXCL12 的 N 端 2-4 残基与受体 TM 螺旋 2、6 和 7 形成的口袋之间的相互作用是 ACKR3 激活的关键决定因素。

相似文献

1
Differential activity and selectivity of N-terminal modified CXCL12 chemokines at the CXCR4 and ACKR3 receptors.
J Leukoc Biol. 2020 Jun;107(6):1123-1135. doi: 10.1002/JLB.2MA0320-383RR. Epub 2020 May 6.
3
Dual targeting of the chemokine receptors CXCR4 and ACKR3 with novel engineered chemokines.
J Biol Chem. 2015 Sep 11;290(37):22385-97. doi: 10.1074/jbc.M115.675108. Epub 2015 Jul 27.
4
Mutational Analysis of Atypical Chemokine Receptor 3 (ACKR3/CXCR7) Interaction with Its Chemokine Ligands CXCL11 and CXCL12.
J Biol Chem. 2017 Jan 6;292(1):31-42. doi: 10.1074/jbc.M116.762252. Epub 2016 Nov 14.
5
The chemokine X-factor: Structure-function analysis of the CXC motif at CXCR4 and ACKR3.
J Biol Chem. 2020 Oct 2;295(40):13927-13939. doi: 10.1074/jbc.RA120.014244. Epub 2020 Aug 11.
6
The peptidomimetic CXCR4 antagonist TC14012 recruits beta-arrestin to CXCR7: roles of receptor domains.
J Biol Chem. 2010 Dec 3;285(49):37939-43. doi: 10.1074/jbc.C110.147470. Epub 2010 Oct 18.
10
Bilayer lipids modulate ligand binding to atypical chemokine receptor 3.
Structure. 2024 Aug 8;32(8):1174-1183.e5. doi: 10.1016/j.str.2024.04.018. Epub 2024 May 21.

引用本文的文献

2
GPR15LG binds CXCR4 and synergistically modulates CXCL12-induced cell signaling and migration.
Cell Commun Signal. 2025 May 20;23(1):234. doi: 10.1186/s12964-025-02231-x.
5
Heterologous protein exposure and secretion optimization in Mycoplasma pneumoniae.
Microb Cell Fact. 2024 Nov 13;23(1):306. doi: 10.1186/s12934-024-02574-z.
6
Multiplex Detection of Fluorescent Chemokine Binding to CXC Chemokine Receptors by NanoBRET.
Int J Mol Sci. 2024 May 4;25(9):5018. doi: 10.3390/ijms25095018.
8
Computational design of dynamic receptor-peptide signaling complexes applied to chemotaxis.
Nat Commun. 2023 May 19;14(1):2875. doi: 10.1038/s41467-023-38491-9.
9
Discovery of Bis-Imidazoline Derivatives as New CXCR4 Ligands.
Molecules. 2023 Jan 24;28(3):1156. doi: 10.3390/molecules28031156.
10
The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention.
Cell Mol Immunol. 2023 Mar;20(3):217-251. doi: 10.1038/s41423-023-00974-6. Epub 2023 Feb 1.

本文引用的文献

2
Atypical Chemokine Receptor 3 (ACKR3): A Comprehensive Overview of its Expression and Potential Roles in the Immune System.
Mol Pharmacol. 2019 Dec;96(6):809-818. doi: 10.1124/mol.118.115329. Epub 2019 Apr 30.
3
ACKR3 Regulation of Neuronal Migration Requires ACKR3 Phosphorylation, but Not β-Arrestin.
Cell Rep. 2019 Feb 5;26(6):1473-1488.e9. doi: 10.1016/j.celrep.2019.01.049.
4
Pathological roles of the homeostatic chemokine CXCL12.
Cytokine Growth Factor Rev. 2018 Dec;44:51-68. doi: 10.1016/j.cytogfr.2018.10.004. Epub 2018 Oct 23.
6
Multisystem multitasking by CXCL12 and its receptors CXCR4 and ACKR3.
Cytokine. 2018 Sep;109:2-10. doi: 10.1016/j.cyto.2017.12.022. Epub 2018 Feb 15.
8
What Do Structures Tell Us About Chemokine Receptor Function and Antagonism?
Annu Rev Biophys. 2017 May 22;46:175-198. doi: 10.1146/annurev-biophys-051013-022942.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验