Université Paris-Saclay, INSERM, Inflammation, Microbiome and Immunosurveillance, Clamart, France.
Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France.
J Leukoc Biol. 2020 Jun;107(6):1123-1135. doi: 10.1002/JLB.2MA0320-383RR. Epub 2020 May 6.
Chemokines play critical roles in numerous physiologic and pathologic processes through their action on seven-transmembrane (TM) receptors. The N-terminal domain of chemokines, which is a key determinant of signaling via its binding within a pocket formed by receptors' TM helices, can be the target of proteolytic processing. An illustrative case of this regulatory mechanism is the natural processing of CXCL12 that generates chemokine variants lacking the first two N-terminal residues. Whereas such truncated variants behave as antagonists of CXCR4, the canonical G protein-coupled receptor of CXCL12, they are agonists of the atypical chemokine receptor 3 (ACKR3/CXCR7), suggesting the implication of different structural determinants in the complexes formed between CXCL12 and its two receptors. Recent analyses have suggested that the CXCL12 N-terminus first engages the TM helices of ACKR3 followed by the receptor N-terminus wrapping around the chemokine core. Here we investigated the first stage of ACKR3-CXCL12 interactions by comparing the activity of substituted or N-terminally truncated variants of CXCL12 toward CXCR4 and ACKR3. We showed that modification of the first two N-terminal residues of the chemokine (K1R or P2G) does not alter the ability of CXCL12 to activate ACKR3. Our results also identified the K1R variant as a G protein-biased agonist of CXCR4. Comparative molecular dynamics simulations of the complexes formed by ACKR3 either with CXCL12 or with the P2G variant identified interactions between the N-terminal 2-4 residues of CXCL12 and a pocket formed by receptor's TM helices 2, 6, and 7 as critical determinants for ACKR3 activation.
趋化因子通过与七跨膜(TM)受体结合在受体 TM 螺旋形成的口袋内发挥作用,在许多生理和病理过程中发挥关键作用。趋化因子的 N 端结构域是通过其与受体 TM 螺旋结合来决定信号转导的关键决定因素,可作为蛋白水解加工的靶点。这种调节机制的一个典型例子是 CXCL12 的天然加工,它产生缺乏前两个 N 端残基的趋化因子变体。虽然这种截断变体作为 CXCR4 的拮抗剂,即 CXCL12 的典型 G 蛋白偶联受体,但它们是趋化因子受体 3(ACKR3/CXCR7)的激动剂,表明不同的结构决定因素在 CXCL12 与其两个受体形成的复合物中发挥作用。最近的分析表明,CXCL12 N 端首先与 ACKR3 的 TM 螺旋结合,然后受体 N 端围绕趋化因子核心缠绕。在这里,我们通过比较 CXCL12 对 CXCR4 和 ACKR3 的取代或 N 端截断变体的活性,研究了 ACKR3-CXCL12 相互作用的第一阶段。我们表明,修饰趋化因子的前两个 N 端残基(K1R 或 P2G)不会改变 CXCL12 激活 ACKR3 的能力。我们的结果还确定了 K1R 变体是 CXCR4 的 G 蛋白偏向激动剂。与 ACKR3 形成的复合物的比较分子动力学模拟,无论是与 CXCL12 还是与 P2G 变体形成的复合物,都确定了 CXCL12 的 N 端 2-4 残基与受体 TM 螺旋 2、6 和 7 形成的口袋之间的相互作用是 ACKR3 激活的关键决定因素。