Center for Computational Toxicology and Exposure.
Oak Ridge Associated Universities.
Toxicol Sci. 2020 Jul 1;176(1):175-192. doi: 10.1093/toxsci/kfaa059.
Mitochondrial toxicity drives several adverse health outcomes. Current high-throughput screening assays for chemically induced mitochondrial toxicity typically measure changes to mitochondrial structure and may not detect known mitochondrial toxicants. We adapted a respirometric screening assay (RSA) measuring mitochondrial function to screen ToxCast chemicals in HepG2 cells using a tiered testing strategy. Of 1042 chemicals initially screened at a singlemaximal concentration, 243 actives were identified and rescreened at 7 concentrations. Concentration-response data for 3 respiration phases confirmed activity and indicated a mechanism for 193 mitochondrial toxicants: 149 electron transport chain inhibitors (ETCi), 15 uncouplers and 29 adenosine triphosphate synthase inhibitors. Subsequently, an electron flow assay was used to identify the target complex for 84 of the 149 ETCi. Sixty reference chemicals were used to compare the RSA to existing ToxCast and Tox21 mitochondrial toxicity assays. The RSA was most predictive (accuracy = 90%) of mitochondrial toxicity. The Tox21 mitochondrial membrane potential assay was also highly predictive (accuracy = 87%) of bioactivity but underestimated the potency of well-known ETCi and provided no mechanistic information. The tiered RSA approach accurately identifies and characterizes mitochondrial toxicants acting through diverse mechanisms and at a throughput sufficient to screen large chemical inventories. The electron flow assay provides additional confirmation and detailed mechanistic understanding for ETCi, the most common type of mitochondrial toxicants among ToxCast chemicals. The mitochondrial toxicity screening approach described herein may inform hazard assessment and the in vitro bioactive concentrations used to derive relevant doses for screening level chemical assessment using new approach methodologies.
线粒体毒性会导致多种健康不良后果。目前用于检测化学物质诱导的线粒体毒性的高通量筛选检测方法通常用于测量线粒体结构的变化,而可能无法检测到已知的线粒体毒物。我们改编了一种测量线粒体功能的呼吸检测筛选方法(RSA),使用分层测试策略在 HepG2 细胞中筛选 ToxCast 化学物质。在最初以单个最高浓度筛选的 1042 种化学物质中,鉴定出 243 种活性物质,并在 7 种浓度下重新筛选。3 个呼吸阶段的浓度-反应数据证实了活性,并表明了 193 种线粒体毒物的作用机制:149 种电子传递链抑制剂(ETCi)、15 种解偶联剂和 29 种三磷酸腺苷合酶抑制剂。随后,使用电子流测定法鉴定了 149 种 ETCi 中的 84 种的靶复合物。使用 60 种参考化学物质将 RSA 与现有的 ToxCast 和 Tox21 线粒体毒性测定法进行比较。RSA 对线粒体毒性的预测最准确(准确率=90%)。Tox21 线粒体膜电位测定法也高度预测(准确率=87%)生物活性,但低估了众所周知的 ETCi 的效力,并且没有提供机制信息。分层 RSA 方法准确识别和表征了通过不同机制起作用且通量足以筛选大量化学物质的线粒体毒物。电子流测定法为 ETCi 提供了额外的确认和详细的机制理解,ETCi 是 ToxCast 化学物质中最常见的线粒体毒物类型。本文所述的线粒体毒性筛选方法可以为危害评估以及用于基于新方法学进行筛选水平化学评估的相关剂量推导的体外生物活性浓度提供信息。