Suppr超能文献

预测小分子的线粒体毒性:来自机制测定和细胞染色数据的见解。

Predicting the Mitochondrial Toxicity of Small Molecules: Insights from Mechanistic Assays and Cell Painting Data.

机构信息

Bayer AG, Machine Learning Research, Research & Development, Pharmaceuticals, 13353 Berlin, Germany.

出版信息

Chem Res Toxicol. 2023 Jul 17;36(7):1107-1120. doi: 10.1021/acs.chemrestox.3c00086. Epub 2023 Jul 6.

Abstract

Mitochondrial toxicity is a significant concern in the drug discovery process, as compounds that disrupt the function of these organelles can lead to serious side effects, including liver injury and cardiotoxicity. Different in vitro assays exist to detect mitochondrial toxicity at varying mechanistic levels: disruption of the respiratory chain, disruption of the membrane potential, or general mitochondrial dysfunction. In parallel, whole cell imaging assays like Cell Painting provide a phenotypic overview of the cellular system upon treatment and enable the assessment of mitochondrial health from cell profiling features. In this study, we aim to establish machine learning models for the prediction of mitochondrial toxicity, making the best use of the available data. For this purpose, we first derived highly curated datasets of mitochondrial toxicity, including subsets for different mechanisms of action. Due to the limited amount of labeled data often associated with toxicological endpoints, we investigated the potential of using morphological features from a large Cell Painting screen to label additional compounds and enrich our dataset. Our results suggest that models incorporating morphological profiles perform better in predicting mitochondrial toxicity than those trained on chemical structures alone (up to +0.08 and +0.09 mean MCC in random and cluster cross-validation, respectively). Toxicity labels derived from Cell Painting images improved the predictions on an external test set up to +0.08 MCC. However, we also found that further research is needed to improve the reliability of Cell Painting image labeling. Overall, our study provides insights into the importance of considering different mechanisms of action when predicting a complex endpoint like mitochondrial disruption as well as into the challenges and opportunities of using Cell Painting data for toxicity prediction.

摘要

线粒体毒性是药物发现过程中的一个重大关注点,因为破坏这些细胞器功能的化合物可能会导致严重的副作用,包括肝损伤和心脏毒性。为了在不同的机制水平上检测线粒体毒性,存在不同的体外检测方法:呼吸链的破坏、膜电位的破坏或一般的线粒体功能障碍。与此同时,像 Cell Painting 这样的全细胞成像检测方法提供了细胞系统在治疗后的表型概述,并能够从细胞特征评估线粒体健康。在这项研究中,我们旨在利用现有数据建立用于预测线粒体毒性的机器学习模型。为此,我们首先从线粒体毒性的高度精心编辑的数据集中提取了数据集,包括不同作用机制的子集。由于与毒性终点相关的标记数据通常数量有限,我们研究了使用来自大型 Cell Painting 筛选的形态特征来标记其他化合物并丰富数据集的潜力。我们的结果表明,与仅基于化学结构训练的模型相比,包含形态特征的模型在预测线粒体毒性方面表现更好(随机和聚类交叉验证的平均 MCC 分别提高了+0.08 和+0.09)。从 Cell Painting 图像中提取的毒性标签可将外部测试集的预测 MCC 提高+0.08。然而,我们还发现需要进一步研究以提高 Cell Painting 图像标记的可靠性。总体而言,我们的研究提供了有关在预测像线粒体破坏这样复杂的终点时考虑不同作用机制的重要性的见解,以及使用 Cell Painting 数据进行毒性预测的挑战和机遇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验