Suppr超能文献

对糖尿病动物视网膜周细胞的转录组学分析揭示了与糖尿病性视网膜病变中血视网膜屏障改变相关的新基因和分子途径。

Transcriptomics analysis of pericytes from retinas of diabetic animals reveals novel genes and molecular pathways relevant to blood-retinal barrier alterations in diabetic retinopathy.

机构信息

Translational Genomics Research Institute, Phoenix, AZ, USA.

Surgery/Ophthalmology, USA; NMVA Health Care System, Albuquerque, NM, USA.

出版信息

Exp Eye Res. 2020 Jun;195:108043. doi: 10.1016/j.exer.2020.108043. Epub 2020 May 4.

Abstract

Selective pericyte loss, the histological hallmark of early diabetic retinopathy (DR), enhances the breakdown of the blood-retinal barrier (BRB) in diabetes. However, the role of pericytes on BRB alteration in diabetes and the signaling pathways involved in their effects are currently unknown. To understand the role of diabetes-induced molecular alteration of pericytes, we performed transcriptomic analysis of sorted retinal pericytes from mice model of diabetes. Retinal tissue from non-diabetic and diabetic (duration 3 months) mouse eyes (n = 10 in each group) were used to isolate pericytes through fluorescent activated cell sorting (FACS) using pericyte specific fluorescent antibodies, PDGFRb-APC. For RNA sequencing and qPCR analysis, a cDNA library was generated using template switching oligo and the resulting libraries were sequenced using paired-end Illumina sequencing. Molecular functional pathways were analyzed using differentially expressed genes (DEGs). Differential expression analysis revealed 217 genes significantly upregulated and 495 genes downregulated, in pericytes isolated from diabetic animals. These analyses revealed a core set of differentially expressed genes that could potentially contribute to the pericyte dysfunction in diabetes and highlighted the pattern of functional connectivity between key candidate genes and blood retinal barrier alteration mechanisms. The top up-regulated gene list included: Ext2, B3gat3, Gpc6, Pip5k1c and Pten and down-regulated genes included: Notch3, Xbp1, Gpc4, Atp1a2 and AKT3. Out of these genes, we further validated one of the down regulated genes, Notch 3 and its role in BRB alteration in diabetic retinopathy. We confirmed the downregulation of Notch3 expression in human retinal pericytes exposed to Advanced Glycation End-products (AGEs) treatment mimicking the chronic hyperglycemia effect. Exploration of pericyte-conditioned media demonstrated that loss of NOTCH3 in pericyte led to increased permeability of endothelial cell monolayers. Collectively, we identify a role for NOTCH3 in pericyte dysfunction in diabetes. Further validation of other DEGs to identify cell specific molecular change through whole transcriptomic approach in diabetic retina will provide novel insight into the pathogenesis of DR and novel therapeutic targets.

摘要

选择性周细胞丢失是早期糖尿病视网膜病变(DR)的组织学标志,可增强糖尿病中血视网膜屏障(BRB)的破坏。然而,周细胞在糖尿病中 BRB 改变中的作用及其涉及的信号通路目前尚不清楚。为了了解糖尿病诱导的周细胞分子改变的作用,我们对糖尿病小鼠模型中分离的视网膜周细胞进行了转录组分析。使用荧光激活细胞分选(FACS),通过周细胞特异性荧光抗体 PDGFRb-APC 从非糖尿病和糖尿病(持续 3 个月)小鼠眼睛的视网膜组织中(每组 10 只)分离周细胞。为了进行 RNA 测序和 qPCR 分析,使用模板转换寡核苷酸生成 cDNA 文库,然后使用配对末端 Illumina 测序对文库进行测序。使用差异表达基因(DEGs)分析分子功能途径。差异表达分析显示,在从糖尿病动物中分离的周细胞中,有 217 个基因显著上调,495 个基因下调。这些分析揭示了一组潜在的差异表达基因,这些基因可能有助于糖尿病中的周细胞功能障碍,并突出了关键候选基因与血视网膜屏障改变机制之间的功能连接模式。上调基因列表的前 10 个基因包括:Ext2、B3gat3、Gpc6、Pip5k1c 和 Pten,下调基因包括:Notch3、Xbp1、Gpc4、Atp1a2 和 AKT3。在这些基因中,我们进一步验证了下调基因之一 Notch3 在糖尿病性视网膜病变中对 BRB 改变的作用。我们证实了在暴露于模拟慢性高血糖作用的晚期糖基化终产物(AGEs)的人视网膜周细胞中 Notch3 表达下调。对周细胞条件培养基的探索表明,周细胞中 NOTCH3 的丢失导致内皮细胞单层的通透性增加。总之,我们确定了 NOTCH3 在糖尿病中周细胞功能障碍中的作用。通过全转录组方法在糖尿病视网膜中进一步验证其他 DEGs,以确定细胞特异性分子变化,将为 DR 的发病机制和新的治疗靶点提供新的见解。

相似文献

2
Evaluation of Notch3 Deficiency in Diabetes-Induced Pericyte Loss in the Retina.
J Vasc Res. 2018;55(5):308-318. doi: 10.1159/000493151. Epub 2018 Oct 22.
4
Molecular analysis of blood-retinal barrier loss in the Akimba mouse, a model of advanced diabetic retinopathy.
Exp Eye Res. 2014 May;122:123-31. doi: 10.1016/j.exer.2014.03.005. Epub 2014 Apr 3.
7
Liraglutide attenuates the migration of retinal pericytes induced by advanced glycation end products.
Peptides. 2018 Jul;105:7-13. doi: 10.1016/j.peptides.2018.05.003. Epub 2018 May 7.
8
Plastic roles of pericytes in the blood-retinal barrier.
Nat Commun. 2017 May 16;8:15296. doi: 10.1038/ncomms15296.

引用本文的文献

1
Multi-omics in exploring the pathophysiology of diabetic retinopathy.
Front Cell Dev Biol. 2024 Dec 11;12:1500474. doi: 10.3389/fcell.2024.1500474. eCollection 2024.
2
The Role of Natural Products in Diabetic Retinopathy.
Biomedicines. 2024 May 21;12(6):1138. doi: 10.3390/biomedicines12061138.
4
The endoplasmic reticulum: Homeostasis and crosstalk in retinal health and disease.
Prog Retin Eye Res. 2024 Jan;98:101231. doi: 10.1016/j.preteyeres.2023.101231. Epub 2023 Dec 12.
5
6
Frontiers in Understanding the Pathological Mechanism of Diabetic Retinopathy.
Med Sci Monit. 2023 Jun 12;29:e939658. doi: 10.12659/MSM.939658.
7
Relationship Between Estimated Glucose Disposal Rate and Type 2 Diabetic Retinopathy.
Diabetes Metab Syndr Obes. 2023 Mar 16;16:807-818. doi: 10.2147/DMSO.S395818. eCollection 2023.
9
Approaches for the isolation and long-term expansion of pericytes from human and animal tissues.
Front Cardiovasc Med. 2023 Jan 10;9:1095141. doi: 10.3389/fcvm.2022.1095141. eCollection 2022.
10
Role of glucose metabolism in ocular angiogenesis (Review).
Mol Med Rep. 2022 Dec;26(6). doi: 10.3892/mmr.2022.12880. Epub 2022 Oct 25.

本文引用的文献

1
Evaluation of Notch3 Deficiency in Diabetes-Induced Pericyte Loss in the Retina.
J Vasc Res. 2018;55(5):308-318. doi: 10.1159/000493151. Epub 2018 Oct 22.
3
Next-generation sequencing in drug development: target identification and genetically stratified clinical trials.
Drug Discov Today. 2018 Oct;23(10):1776-1783. doi: 10.1016/j.drudis.2018.05.015. Epub 2018 May 24.
5
Neonatal pancreatic pericytes support β-cell proliferation.
Mol Metab. 2017 Oct;6(10):1330-1338. doi: 10.1016/j.molmet.2017.07.010. Epub 2017 Jul 19.
6
Therapeutic antibody targeting of Notch3 signaling prevents mural cell loss in CADASIL.
J Exp Med. 2017 Aug 7;214(8):2271-2282. doi: 10.1084/jem.20161715. Epub 2017 Jul 11.
7
8
Analysis of the brain mural cell transcriptome.
Sci Rep. 2016 Oct 11;6:35108. doi: 10.1038/srep35108.
9
Diabetic Macular Edema: Pathophysiology and Novel Therapeutic Targets.
Ophthalmology. 2015 Jul;122(7):1375-94. doi: 10.1016/j.ophtha.2015.03.024. Epub 2015 Apr 30.
10
Cerebral Cavernous Malformation-1 Protein Controls DLL4-Notch3 Signaling Between the Endothelium and Pericytes.
Stroke. 2015 May;46(5):1337-43. doi: 10.1161/STROKEAHA.114.007512. Epub 2015 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验