Institut für Physik, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany.
Helmholtz Institute Mainz, GSI Helmholtzzentrum für Schwerionenforschung, 55099 Mainz, Germany.
Proc Natl Acad Sci U S A. 2020 May 19;117(20):10667-10672. doi: 10.1073/pnas.1917172117. Epub 2020 May 6.
The ever-increasing demand for high-capacity rechargeable batteries highlights the need for sensitive and accurate diagnostic technology for determining the state of a cell, for identifying and localizing defects, and for sensing capacity loss mechanisms. Here, we leverage atomic magnetometry to map the weak induced magnetic fields around Li-ion battery cells in a magnetically shielded environment. The ability to rapidly measure cells nondestructively allows testing even commercial cells in their actual operating conditions, as a function of state of charge. These measurements provide maps of the magnetic susceptibility of the cell, which follow trends characteristic for the battery materials under study upon discharge. In particular, hot spots of charge storage are identified. In addition, the measurements reveal the capability to measure transient internal current effects, at a level of μA, which are shown to be dependent upon the state of charge. These effects highlight noncontact battery characterization opportunities. The diagnostic power of this technique could be used for the assessment of cells in research, quality control, or during operation, and could help uncover details of charge storage and failure processes in cells.
对高容量可充电电池的需求不断增长,这凸显了对用于确定电池状态、识别和定位缺陷以及感测容量损失机制的灵敏且精确的诊断技术的需求。在这里,我们利用原子磁力计在磁屏蔽环境中绘制锂离子电池周围弱诱导磁场的图谱。快速对电池进行非破坏性测量的能力允许对实际工作条件下的商业电池进行测试,作为荷电状态的函数。这些测量提供了电池磁化率的图谱,这些图谱遵循放电过程中研究用电池材料的特征趋势。特别是,识别了电荷存储的热点。此外,这些测量还显示了测量瞬态内部电流效应的能力,其水平可达 μA,并且表明该电流效应取决于荷电状态。这些效应突出了非接触式电池特性分析的机会。该技术的诊断能力可用于研究、质量控制或运行期间的电池评估,并且有助于揭示电池中电荷存储和故障过程的细节。