Andrews Blake, Lai Matthew, Wang Zhen, Kato Norihisa, Tayler Michael C D, Druga Emanuel, Ajoy Ashok
Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.
Hamamatsu Photonics, Sunayama-cho, Chuo-ku, Hamamatsu City, Shizuoka Pref. 430-8587, Japan.
PNAS Nexus. 2025 Jun 27;4(6):pgaf187. doi: 10.1093/pnasnexus/pgaf187. eCollection 2025 Jun.
Despite its versatility and high chemical specificity, conventional nuclear magnetic resonance (NMR) spectroscopy is limited in measurement throughput due to the need for high-homogeneity magnetic fields, necessitating sequential sample analysis, and expensive devices. Here, we propose a multichannel NMR device that addresses these limitations by leveraging the zero-to ultralow-field (ZULF) regime, where simultaneous detection of multiple samples is carried out via an array of compact optically pumped magnetometers (OPMs). A magnetic field is used only for prepolarization, permitting the use of large-bore, high-field, magnets that can accommodate multiple samples concurrently. Through systematic improvements, we demonstrate sensitive, high-resolution ZULF NMR spectroscopy with sensitivity comparable to benchtop C NMR systems. The spectroscopy remains robust without the need for field shimming for periods on the order of weeks. We show the detection of ZULF NMR signals from organic molecules without isotopic enrichment, and demonstrate the parallelized detection of three distinct samples simultaneously as a proof-of-concept, with the ability to scale further to over 100 channels at a cost comparable to traditional liquid state NMR systems. This work sets the stage for using multichannel "NMR camera" devices for inline reaction monitoring, robotic chemistry, quality control, and high-throughput assays.
尽管传统核磁共振(NMR)光谱具有通用性和高化学特异性,但由于需要高均匀性磁场、必须进行顺序样品分析以及设备昂贵,其测量通量受到限制。在此,我们提出一种多通道NMR设备,该设备通过利用零至超低场(ZULF)区域来解决这些限制,在该区域中,通过一系列紧凑的光泵磁力计(OPM)对多个样品进行同时检测。磁场仅用于预极化,从而允许使用能够同时容纳多个样品的大口径、高场磁体。通过系统改进,我们展示了灵敏、高分辨率的ZULF NMR光谱,其灵敏度与台式¹³C NMR系统相当。该光谱在数周时间内无需场匀场即可保持稳定。我们展示了无需同位素富集即可检测来自有机分子的ZULF NMR信号,并作为概念验证展示了同时并行检测三个不同样品的能力,并且能够以与传统液态NMR系统相当的成本进一步扩展至100多个通道。这项工作为使用多通道“NMR相机”设备进行在线反应监测、机器人化学、质量控制和高通量分析奠定了基础。