Suppr超能文献

一种基于控制诊断阻滞的诊断预测模型,用于验证一种可区分头痛源自颈椎的临床检查方法的有效性。

Validation of a clinical examination to differentiate a cervicogenic source of headache: a diagnostic prediction model using controlled diagnostic blocks.

机构信息

AMITA Neuroscience Institute, AMITA Health Saint Joseph Medical Center, Joliet, Illinois, USA

College of Health Sciences, University of Saint Augustine for Health Sciences, Saint Augustine, Florida, USA.

出版信息

BMJ Open. 2020 May 5;10(5):e035245. doi: 10.1136/bmjopen-2019-035245.

Abstract

OBJECTIVES

Neck pain commonly accompanies recurrent headaches such as migraine, tension-type and cervicogenic headache. Neck pain may be part of the headache symptom complex or a local source. Patients commonly seek neck treatment to alleviate headache, but this is only indicated when cervical musculoskeletal dysfunction is the source of pain. Clinical presentation of reduced cervical extension, painful cervical joint dysfunction and impaired muscle function collectively has been shown to identify cervicogenic headache among patients with recurrent headaches. The pattern's validity has not been tested against the 'gold standard' of controlled diagnostic blocks. This study assessed the validity of this pattern of cervical musculoskeletal signs to identify a cervical source of headache and neck pain, against controlled diagnostic blocks, in patients with headache and neck pain.

DESIGN

Prospective concurrent validity study that employed a diagnostic model building approach to analysis.

SETTING

Hospital-based multidisciplinary outpatient clinic in Joliet, Illinois.

PARTICIPANTS

A convenience sample of participants who presented to a headache clinic with recurrent headaches associated with neck pain. Sixty participants were enrolled and thirty were included in the analysis.

OUTCOME MEASURES

Participants underwent a clinical examination consisting of relevant tests of cervical musculoskeletal dysfunction. Controlled diagnostic blocks of C2/C3-C3/C4 established a cervical source of neck pain. Penalised logistic regression identified clinical signs to be included in a diagnostic model that best predicted participants' responses to diagnostic blocks.

RESULTS

Ten of thirty participants responded to diagnostic blocks. The full pattern of cervical musculoskeletal signs best predicted participants' responses (expected prediction error = 0.57) and accounted for 65% of the variance in responses.

CONCLUSIONS

This study confirmed the validity of the musculoskeletal pattern to identify a cervical source of headache and neck pain. Adopting this criterion pattern may strengthen cervicogenic headache diagnosis and inform differential diagnosis of neck pain accompanying migraine and tension-type headache.

摘要

目的

颈部疼痛常伴有偏头痛、紧张型头痛和颈源性头痛等反复发作性头痛。颈部疼痛可能是头痛症状的一部分,也可能是局部疼痛的来源。患者通常会寻求颈部治疗以缓解头痛,但只有在颈椎肌肉骨骼功能障碍是疼痛来源时才需要进行治疗。颈椎活动度降低、颈椎关节功能障碍和肌肉功能受损等临床表现已被证明可用于识别复发性头痛患者中的颈源性头痛。这种模式的有效性尚未通过对照诊断阻滞的“金标准”进行测试。本研究评估了这种颈椎肌肉骨骼体征模式在头痛和颈部疼痛患者中,针对对照诊断阻滞,识别颈部头痛和颈部疼痛来源的有效性。

设计

采用诊断模型构建方法进行分析的前瞻性同期有效性研究。

地点

伊利诺伊州乔利埃特市的医院多学科门诊。

参与者

向头痛诊所就诊的头痛伴颈部疼痛的复发性头痛患者的便利样本。共纳入 60 名参与者,其中 30 名参与者纳入分析。

测量结果

参与者接受了颈椎肌肉骨骼功能障碍相关测试的临床检查。C2/C3-C3/C4 的对照诊断阻滞确定了颈部疼痛的来源。罚分逻辑回归确定了可纳入最佳预测参与者对诊断阻滞反应的诊断模型的临床体征。

结果

30 名参与者中有 10 名对诊断阻滞有反应。颈椎肌肉骨骼体征的完整模式最能预测参与者的反应(预期预测误差=0.57),并解释了参与者反应的 65%的方差。

结论

本研究证实了肌肉骨骼模式识别头痛和颈部疼痛的颈部来源的有效性。采用这一标准模式可能会加强颈源性头痛的诊断,并为偏头痛和紧张型头痛伴发的颈部疼痛的鉴别诊断提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2e4/7223143/f2d85a645d76/bmjopen-2019-035245f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验