Department of Geology and Geophysics, Yale University, 210 Whitney Ave, New Haven, CT, 06511, USA.
School of Earth and Atmospheric Sciences, Georgia Institute of Technology, GA, 30332, USA.
Nat Commun. 2020 May 6;11(1):2232. doi: 10.1038/s41467-020-15673-3.
The marine phosphorus cycle plays a critical role in controlling the extent of global primary productivity and thus atmospheric pO on geologic time scales. However, previous attempts to model carbon-phosphorus-oxygen feedbacks have neglected key parameters that could shape the global P cycle. Here we present new diagenetic models to fully parameterize marine P burial. We have also coupled this diagenetic framework to a global carbon cycle model. We find that seawater calcium concentration, by strongly influencing carbonate fluorapatite (CFA) formation, is a key factor controlling global phosphorus cycling, and therefore plays a critical role in shaping the global oxygen cycle. A compilation of Cenozoic deep-sea sedimentary phosphorus speciation data provides empirical support for the idea that CFA formation is strongly influenced by marine Ca concentrations. Therefore, we propose a previously overlooked coupling between Phanerozoic tectonic cycles, the major-element composition of seawater, the marine phosphorus cycle, and atmospheric pO.
海洋磷循环在控制全球初级生产力的程度方面起着关键作用,从而影响地质时间尺度上的大气 pO2。然而,先前模拟碳-磷-氧反馈的尝试忽略了可能塑造全球磷循环的关键参数。在这里,我们提出了新的成岩模型来充分参数化海洋磷埋藏。我们还将这种成岩框架耦合到一个全球碳循环模型中。我们发现,海水钙离子浓度通过强烈影响碳酸盐氟磷灰石 (CFA) 的形成,是控制全球磷循环的关键因素,因此在塑造全球氧气循环方面起着关键作用。新生代深海沉积物磷形态数据的汇编为 CFA 形成强烈受海洋 Ca 浓度影响的观点提供了经验支持。因此,我们提出了一个以前被忽视的假设,即显生宙构造旋回、海水主要元素组成、海洋磷循环和大气 pO2 之间存在相互作用。