Lenton Timothy M, Daines Stuart J
Earth System Science Group, College of Life and Environmental Sciences, University of Exeter, Exeter, U.K.
Emerg Top Life Sci. 2018 Sep 28;2(2):267-278. doi: 10.1042/ETLS20170156.
A 'Neoproterozoic oxygenation event' is widely invoked as a causal factor in animal evolution, and often attributed to abiotic causes such as post-glacial pulses of phosphorus weathering. However, recent evidence suggests a series of transient ocean oxygenation events ∼660-520 Ma, which do not fit the simple model of a monotonic rise in atmospheric oxygen (pO2). Hence, we consider mechanisms by which the evolution of marine eukaryotes, coupled with biogeochemical and ecological feedbacks, potentially between alternate stable states, could have caused changes in ocean carbon cycling and redox state, phosphorus cycling and atmospheric pO2. We argue that the late Tonian ocean ∼750 Ma was dominated by rapid microbial cycling of dissolved organic matter (DOM) with elevated nutrient (P) levels due to inefficient removal of organic matter to sediments. We suggest the abrupt onset of the eukaryotic algal biomarker record ∼660-640 Ma was linked to an escalation of protozoan predation, which created a 'biological pump' of sinking particulate organic matter (POM). The resultant transfer of organic carbon (Corg) and phosphorus to sediments was strengthened by subsequent eukaryotic innovations, including the advent of sessile benthic animals and mobile burrowing animals. Thus, each phase of eukaryote evolution tended to lower P levels and oxygenate the ocean on ∼104 year timescales, but by decreasing Corg/P burial ratios, tended to lower atmospheric pO2 and deoxygenate the ocean again on ∼106 year timescales. This can help explain the transient nature and ∼106 year duration of oceanic oxygenation events through the Cryogenian-Ediacaran-Cambrian.
“新元古代氧化事件”被广泛认为是动物进化的一个因果因素,并且常常归因于非生物原因,比如冰川期后磷风化的脉冲。然而,最近的证据表明在约6.6亿至5.2亿年前存在一系列短暂的海洋氧化事件,这并不符合大气氧(pO₂)单调上升的简单模型。因此,我们考虑海洋真核生物的进化,连同生物地球化学和生态反馈(可能在交替稳定状态之间)可能导致海洋碳循环、氧化还原状态、磷循环和大气pO₂发生变化的机制。我们认为,约7.5亿年前的晚托宁期海洋以溶解有机物(DOM)的快速微生物循环为主,由于有机物向沉积物的去除效率低下,营养物质(P)水平升高。我们认为,约6.6亿至6.4亿年前真核藻类生物标志物记录的突然出现与原生动物捕食的升级有关,这创造了一个下沉颗粒有机物(POM)的“生物泵”。随后的真核生物创新,包括固着底栖动物和移动穴居动物的出现,加强了有机碳(Corg)和磷向沉积物的转移。因此,真核生物进化的每个阶段往往在约10⁴年的时间尺度上降低P水平并使海洋氧化,但通过降低Corg/P埋藏比,往往在约10⁶年的时间尺度上降低大气pO₂并再次使海洋脱氧。这有助于解释通过成冰纪 - 埃迪卡拉纪 - 寒武纪的海洋氧化事件的短暂性质和约10⁶年的持续时间。