Suppr超能文献

未经治疗的原发性前列腺癌中的染色体不稳定性作为转移潜能的指标。

Chromosomal instability in untreated primary prostate cancer as an indicator of metastatic potential.

机构信息

Department of Urology, David Geffen School of Medicine at UCLA, Box 951738, 10833 Le Conte Ave 66-188 CHS UCLA, Los Angeles, CA, 90095, USA.

Department of Biomedical Sciences, Cedars-Sinai Medical Center, California, Los Angeles, USA.

出版信息

BMC Cancer. 2020 May 7;20(1):398. doi: 10.1186/s12885-020-06817-1.

Abstract

BACKGROUND

Metastatic prostate cancer (PC) is highly lethal. The ability to identify primary tumors capable of dissemination is an unmet need in the quest to understand lethal biology and improve patient outcomes. Previous studies have linked chromosomal instability (CIN), which generates aneuploidy following chromosomal missegregation during mitosis, to PC progression. Evidence of CIN includes broad copy number alterations (CNAs) spanning > 300 base pairs of DNA, which may also be measured via RNA expression signatures associated with CNA frequency. Signatures of CIN in metastatic PC, however, have not been interrogated or well defined. We examined a published 70-gene CIN signature (CIN70) in untreated and castration-resistant prostate cancer (CRPC) cohorts from The Cancer Genome Atlas (TCGA) and previously published reports. We also performed transcriptome and CNA analysis in a unique cohort of untreated primary tumors collected from diagnostic prostate needle biopsies (PNBX) of localized (M0) and metastatic (M1) cases to determine if CIN was linked to clinical stage and outcome.

METHODS

PNBX were collected from 99 patients treated in the VA Greater Los Angeles (GLA-VA) Healthcare System between 2000 and 2016. Total RNA was extracted from high-grade cancer areas in PNBX cores, followed by RNA sequencing and/or copy number analysis using OncoScan. Multivariate logistic regression analyses permitted calculation of odds ratios for CIN status (high versus low) in an expanded GLA-VA PNBX cohort (n = 121).

RESULTS

The CIN70 signature was significantly enriched in primary tumors and CRPC metastases from M1 PC cases. An intersection of gene signatures comprised of differentially expressed genes (DEGs) generated through comparison of M1 versus M0 PNBX and primary CRPC tumors versus metastases revealed a 157-gene "metastasis" signature that was further distilled to 7-genes (PC-CIN) regulating centrosomes, chromosomal segregation, and mitotic spindle assembly. High PC-CIN scores correlated with CRPC, PC-death and all-cause mortality in the expanded GLA-VA PNBX cohort. Interestingly, approximately 1/3 of M1 PNBX cases exhibited low CIN, illuminating differential pathways of lethal PC progression.

CONCLUSIONS

Measuring CIN in PNBX by transcriptome profiling is feasible, and the PC-CIN signature may identify patients with a high risk of lethal progression at the time of diagnosis.

摘要

背景

转移性前列腺癌(PC)具有高度致命性。能够识别具有扩散能力的原发性肿瘤是人们在了解致命生物学并改善患者预后方面尚未满足的需求。先前的研究将染色体不稳定性(CIN)与 PC 进展联系起来,CIN 在有丝分裂过程中染色体错误分离后会产生非整倍体。CIN 的证据包括跨越 > 300 个碱基对 DNA 的广泛拷贝数改变(CNAs),也可以通过与 CNA 频率相关的 RNA 表达特征来测量。然而,转移性 PC 中的 CIN 特征尚未经过探究或明确定义。我们检查了发表在癌症基因组图谱(TCGA)和之前发表的报告中的未经治疗和去势抵抗性前列腺癌(CRPC)队列中的已发表的 70 个基因 CIN 签名(CIN70)。我们还对来自退伍军人事务部大洛杉矶(GLA-VA)医疗保健系统的局部(M0)和转移性(M1)病例的诊断性前列腺针吸活检(PNBX)中收集的未经治疗的原发性肿瘤进行了转录组和 CNA 分析,以确定 CIN 是否与临床阶段和结局相关。

方法

从 2000 年至 2016 年在退伍军人事务部大洛杉矶(GLA-VA)医疗保健系统接受治疗的 99 名患者中收集 PNBX。从 PNBX 核心的高级别癌区提取总 RNA,然后使用 OncoScan 进行 RNA 测序和/或拷贝数分析。多变量逻辑回归分析允许在扩展的 GLA-VA PNBX 队列(n=121)中计算 CIN 状态(高与低)的优势比。

结果

CIN70 签名在 M1 PC 病例的原发性肿瘤和 CRPC 转移中明显富集。通过比较 M1 与 M0 PNBX 和原发性 CRPC 肿瘤与转移瘤的差异表达基因(DEGs)生成的基因签名的交集揭示了一个 157 个基因的“转移”签名,该签名进一步浓缩为 7 个基因(PC-CIN),调节着中心体、染色体分离和有丝分裂纺锤体组装。在扩展的 GLA-VA PNBX 队列中,高 PC-CIN 评分与 CRPC、PC 死亡和全因死亡率相关。有趣的是,大约 1/3 的 M1 PNBX 病例表现出低 CIN,这揭示了致命性 PC 进展的不同途径。

结论

通过转录组谱分析测量 PNBX 中的 CIN 是可行的,PC-CIN 特征可能在诊断时识别出具有高致命性进展风险的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5af2/7204307/e45a0762082a/12885_2020_6817_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验