Suppr超能文献

量化单晶LiCoO正极颗粒中的氧化还原异质性。

Quantifying redox heterogeneity in single-crystalline LiCoO cathode particles.

作者信息

Wei Chenxi, Hong Yanshuai, Tian Yangchao, Yu Xiqian, Liu Yijin, Pianetta Piero

机构信息

National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China.

Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.

出版信息

J Synchrotron Radiat. 2020 May 1;27(Pt 3):713-719. doi: 10.1107/S1600577520002076. Epub 2020 Mar 13.

Abstract

Active cathode particles are fundamental architectural units for the composite electrode of Li-ion batteries. The microstructure of the particles has a profound impact on their behavior and, consequently, on the cell-level electrochemical performance. LiCoO (LCO, a dominant cathode material) is often in the form of well-shaped particles, a few micrometres in size, with good crystallinity. In contrast to secondary particles (an agglomeration of many fine primary grains), which are the other common form of battery particles populated with structural and chemical defects, it is often anticipated that good particle crystallinity leads to superior mechanical robustness and suppressed charge heterogeneity. Yet, sub-particle level charge inhomogeneity in LCO particles has been widely reported in the literature, posing a frontier challenge in this field. Herein, this topic is revisited and it is demonstrated that X-ray absorption spectra on single-crystalline particles with highly anisotropic lattice structures are sensitive to the polarization configuration of the incident X-rays, causing some degree of ambiguity in analyzing the local spectroscopic fingerprint. To tackle this issue, a methodology is developed that extracts the white-line peak energy in the X-ray absorption near-edge structure spectra as a key data attribute for representing the local state of charge in the LCO crystal. This method demonstrates significantly improved accuracy and reveals the mesoscale chemical complexity in LCO particles with better fidelity. In addition to the implications on the importance of particle engineering for LCO cathodes, the method developed herein also has significant impact on spectro-microscopic studies of single-crystalline materials at synchrotron facilities, which is broadly applicable to a wide range of scientific disciplines well beyond battery research.

摘要

活性阴极颗粒是锂离子电池复合电极的基本结构单元。颗粒的微观结构对其行为有着深远影响,进而影响电池级别的电化学性能。LiCoO(LCO,一种主要的阴极材料)通常呈形状规整的颗粒形式,尺寸为几微米,具有良好的结晶度。与二次颗粒(许多细小一次晶粒的团聚体)不同,二次颗粒是电池颗粒的另一种常见形式,存在结构和化学缺陷,人们通常认为良好的颗粒结晶度会带来卓越的机械强度和抑制电荷不均匀性。然而,文献中已广泛报道了LCO颗粒中亚颗粒级别的电荷不均匀性,这在该领域构成了前沿挑战。在此,重新审视了这个话题,并证明具有高度各向异性晶格结构的单晶颗粒上的X射线吸收光谱对入射X射线的偏振配置敏感,这在分析局部光谱指纹时会造成一定程度的模糊性。为解决这个问题,开发了一种方法,该方法提取X射线吸收近边结构光谱中的白线峰值能量作为表示LCO晶体中局部电荷状态的关键数据属性。该方法显示出显著提高的准确性,并以更高的保真度揭示了LCO颗粒中的中尺度化学复杂性。除了对LCO阴极颗粒工程重要性的启示外,本文开发的方法对同步辐射设施中单晶材料的光谱显微镜研究也有重大影响,广泛适用于电池研究之外的广泛科学学科。

相似文献

1
Quantifying redox heterogeneity in single-crystalline LiCoO cathode particles.
J Synchrotron Radiat. 2020 May 1;27(Pt 3):713-719. doi: 10.1107/S1600577520002076. Epub 2020 Mar 13.
3
Mesoscale Battery Science: The Behavior of Electrode Particles Caught on a Multispectral X-ray Camera.
Acc Chem Res. 2018 Oct 16;51(10):2484-2492. doi: 10.1021/acs.accounts.8b00123. Epub 2018 Jun 11.
5
Structural Evolution of Mg-Doped Single-Crystal LiCoO Cathodes: Importance of Morphology and Mg-Doping Sites.
ACS Appl Mater Interfaces. 2023 Feb 15;15(6):7939-7948. doi: 10.1021/acsami.2c17993. Epub 2023 Jan 10.
6
Enhancing the Stability of 4.6 V LiCoO Cathode Material via Gradient Doping.
Nanomaterials (Basel). 2024 Jan 9;14(2):147. doi: 10.3390/nano14020147.
7
Designing Advanced In Situ Electrode/Electrolyte Interphases for Wide Temperature Operation of 4.5 V Li||LiCoO Batteries.
Adv Mater. 2020 Dec;32(49):e2004898. doi: 10.1002/adma.202004898. Epub 2020 Nov 4.
10
Enhancing Electrochemical Performances of Rechargeable Lithium-Ion Batteries via Cathode Interfacial Engineering.
ACS Appl Mater Interfaces. 2022 Jan 26;14(3):4100-4110. doi: 10.1021/acsami.1c20787. Epub 2022 Jan 11.

引用本文的文献

2
Full-field hard X-ray nano-tomography at SSRF.
J Synchrotron Radiat. 2023 Jul 1;30(Pt 4):815-821. doi: 10.1107/S1600577523003168. Epub 2023 May 5.
3
Structural and chemical evolution in layered oxide cathodes of lithium-ion batteries revealed by synchrotron techniques.
Natl Sci Rev. 2021 Aug 17;9(2):nwab146. doi: 10.1093/nsr/nwab146. eCollection 2022 Feb.

本文引用的文献

1
Structural Distortion-Induced Charge Gradient Distribution of Co Ions in Delithiated LiCoO Cathode.
J Phys Chem Lett. 2019 Dec 19;10(24):7537-7546. doi: 10.1021/acs.jpclett.9b02711. Epub 2019 Nov 25.
2
Surface-to-Bulk Redox Coupling through Thermally Driven Li Redistribution in Li- and Mn-Rich Layered Cathode Materials.
J Am Chem Soc. 2019 Jul 31;141(30):12079-12086. doi: 10.1021/jacs.9b05349. Epub 2019 Jul 18.
4
Unveiling the Role and Mechanism of Mechanochemical Activation on Lithium Cobalt Oxide Powders from Spent Lithium-Ion Batteries.
Environ Sci Technol. 2018 Nov 20;52(22):13136-13143. doi: 10.1021/acs.est.8b03469. Epub 2018 Nov 12.
7
Mesoscale Battery Science: The Behavior of Electrode Particles Caught on a Multispectral X-ray Camera.
Acc Chem Res. 2018 Oct 16;51(10):2484-2492. doi: 10.1021/acs.accounts.8b00123. Epub 2018 Jun 11.
8
Elucidating anionic oxygen activity in lithium-rich layered oxides.
Nat Commun. 2018 Mar 5;9(1):947. doi: 10.1038/s41467-018-03403-9.
10
Finding a Needle in the Haystack: Identification of Functionally Important Minority Phases in an Operating Battery.
Nano Lett. 2017 Dec 13;17(12):7782-7788. doi: 10.1021/acs.nanolett.7b03985. Epub 2017 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验