Xu Jing, Sun Meiling, Qiao Ruimin, Renfrew Sara E, Ma Lu, Wu Tianpin, Hwang Sooyeon, Nordlund Dennis, Su Dong, Amine Khalil, Lu Jun, McCloskey Bryan D, Yang Wanli, Tong Wei
Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Nat Commun. 2018 Mar 5;9(1):947. doi: 10.1038/s41467-018-03403-9.
Recent research has explored combining conventional transition-metal redox with anionic lattice oxygen redox as a new and exciting direction to search for high-capacity lithium-ion cathodes. Here, we probe the poorly understood electrochemical activity of anionic oxygen from a material perspective by elucidating the effect of the transition metal on oxygen redox activity. We study two lithium-rich layered oxides, specifically lithium nickel metal oxides where metal is either manganese or ruthenium, which possess a similar structure and discharge characteristics, but exhibit distinctly different charge profiles. By combining X-ray spectroscopy with operando differential electrochemical mass spectrometry, we reveal completely different oxygen redox activity in each material, likely resulting from the different interaction between the lattice oxygen and transition metals. This work provides additional insights into the complex mechanism of oxygen redox and development of advanced high-capacity lithium-ion cathodes.
最近的研究探索了将传统的过渡金属氧化还原与阴离子晶格氧氧化还原相结合,作为寻找高容量锂离子阴极的一个新的、令人兴奋的方向。在这里,我们从材料角度通过阐明过渡金属对氧氧化还原活性的影响,来探究人们了解较少的阴离子氧的电化学活性。我们研究了两种富锂层状氧化物,特别是金属为锰或钌的锂镍金属氧化物,它们具有相似的结构和放电特性,但表现出明显不同的充电曲线。通过将X射线光谱与原位差分电化学质谱相结合,我们揭示了每种材料中完全不同的氧氧化还原活性,这可能是由于晶格氧与过渡金属之间不同的相互作用所致。这项工作为氧氧化还原的复杂机制以及先进高容量锂离子阴极的开发提供了更多见解。