Johnson Timothy J, Diaz Emmanuela, Hughey Kendall D, Myers Tanya L, Blake Thomas A, Dohnalkova Alice C, Burton Sarah D
Pacific Northwest National Laboratory, Richland, WA, USA.
Defence Research and Development Canada-Valcartier Research Center, Québec, QC, Canada.
Appl Spectrosc. 2020 Aug;74(8):851-867. doi: 10.1177/0003702820930009. Epub 2020 Jun 25.
In combination with other parameters, the real, (), and imaginary, (), components of the complex refractive index, = + i, can be used to simulate the optical properties of a material in different forms, e.g., its infrared spectra. Ultimately, such values can be used to generate a database of synthetic reflectance spectra for the different morphologies to which experimental data can be compared. But obtaining reliable values of the optical constants for solid materials is challenging due to the lack of optical quality specimens, usually crystals, large enough to measure. An alternative to crystals is to press the powder into a uniform disk. We have produced pellets from ammonium sulfate, (NH)SO, powder and derived the pellets' and values via single-angle reflectance using a specular reflectance device in combination with a Fourier transform infrared spectrometer. The single-angle technique measures amplitude of light reflected from the material as a function of wavelength over a wide spectral domain; the optical constants are determined from the reflectance data using the Kramers-Kronig relationship. We investigate several parameters associated with the pellets and pellet formation and their effects upon delivering the most reliable values. Parameters studied include pellet diameter, mass, and density (void space), drying, grinding, sieving, and particle size in the pellet formation, as well as pressing pressure and duration. Of these parameters, using size-selected mixtures of dried, small (<50 µm) particles and pressing at ≥10 tons for at least 30 min were found key to forming highly reflective samples. Comparison of two sets of previous literature () and () values obtained from crystalline (NH)SO both as crystal reflectance as well as extinction spectra of aerosols measured in a flow tube shows reasonable agreement, but suggests the present values, as confirmed from two independent techniques, represent a substantial improvement for values for (NH)SO, also demonstrating promise to measure the optical constants of other materials.
结合其他参数,复折射率(n = n_r + in_i)的实部(n_r)和虚部(n_i)可用于模拟不同形态材料的光学性质,例如其红外光谱。最终,这些(n)值可用于生成不同形态的合成反射光谱数据库,以便与实验数据进行比较。但是,由于缺乏足够大的光学质量样本(通常是晶体)来测量,因此获得固体材料光学常数(n)的可靠值具有挑战性。晶体的替代方法是将粉末压制成均匀的圆盘。我们用硫酸铵((NH_4)_2SO_4)粉末制作了颗粒,并通过使用镜面反射装置结合傅里叶变换红外光谱仪的单角度反射率得出颗粒的(n_r)和(n_i)值。单角度技术测量从材料反射的光的振幅作为宽光谱域上波长的函数;光学常数通过使用克拉默斯 - 克朗尼格关系从反射率数据中确定。我们研究了与颗粒和颗粒形成相关的几个参数及其对提供最可靠(n)值的影响。研究的参数包括颗粒直径、质量和密度(空隙空间)、干燥、研磨、筛分以及颗粒形成过程中的粒径,以及压制压力和持续时间。在这些参数中,使用尺寸选择的干燥小颗粒((<50,\mu m))混合物并在(\geq10)吨的压力下压制至少(30)分钟被发现是形成高反射率样品的关键。将两组先前文献中从结晶((NH_4)_2SO_4)获得的(n)值(作为晶体反射率以及在流动管中测量的气溶胶的消光光谱)进行比较,结果显示出合理的一致性,但表明通过两种独立技术确认的当前值代表了((NH_4)_2SO_4)的(n)值有实质性改进,也证明了测量其他材料光学常数的前景。