Edri Hagai, Raz Boaz, Matzliah Noam, Davidson Nir, Ozeri Roee
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel.
Phys Rev Lett. 2020 Apr 24;124(16):163401. doi: 10.1103/PhysRevLett.124.163401.
Interactions in an ultracold boson-fermion mixture are often manifested by elastic collisions. In a mixture of a condensed Bose gas (BEC) and spin polarized degenerate Fermi gas (DFG), fermions can mediate spin-spin interactions between bosons, leading to an effective long-range magnetic interaction analogous to Ruderman-Kittel-Kasuya-Yosida [Phys. Rev. 96, 99 (1954); Prog. Theor. Phys. 16, 45 (1956); Phys. Rev. 106, 893 (1957)] interaction in solids. We used Ramsey spectroscopy of the hyperfine clock transition in a ^{87}Rb BEC to measure the interaction mediated by a ^{40}K DFG. By controlling the boson density we isolated the effect of mediated interactions from mean-field frequency shifts due to direct collision with fermions. We measured an increase of boson spin-spin interaction by a factor of η=1.45±0.05^{stat}±0.13^{syst} in the presence of the DFG, providing clear evidence of spin-spin fermion mediated interaction. Decoherence in our system was dominated by inhomogeneous boson density shift, which increased significantly in the presence of the DFG, again indicating mediated interactions. We also measured a frequency shift due to boson-fermion interactions in accordance with a scattering length difference of a_{bf_{2}}-a_{bf_{1}}=-5.36±0.44^{stat}±1.43^{syst}a_{0} between the clock-transition states, a first measurement beyond the low-energy elastic approximation [R. Côté, A. Dalgarno, H. Wang, and W. C. Stwalley, Phys. Rev. A 57, R4118 (1998); A. Dalgarno and M. Rudge, Proc. R. Soc. A 286, 519 (1965)] in this mixture. This interaction can be tuned with a future use of a boson-fermion Feshbach resonance. Fermion-mediated interactions can potentially give rise to interesting new magnetic phases and extend the Bose-Hubbard model when the atoms are placed in an optical lattice.
超冷玻色子 - 费米子混合物中的相互作用通常通过弹性碰撞表现出来。在凝聚玻色气体(BEC)和自旋极化简并费米气体(DFG)的混合物中,费米子可以介导玻色子之间的自旋 - 自旋相互作用,从而导致一种类似于固体中鲁德曼 - 基特尔 - 卡苏亚 - 约西达[《物理评论》96, 99 (1954); 《理论物理进展》16, 45 (1956); 《物理评论》106, 893 (1957)]相互作用的有效长程磁相互作用。我们利用(^{87}Rb)玻色 - 爱因斯坦凝聚体中超精细时钟跃迁的拉姆齐光谱来测量由(^{40}K)简并费米气体介导的相互作用。通过控制玻色子密度,我们将介导相互作用的效应与由于与费米子直接碰撞引起的平均场频移隔离开来。我们测量到在存在简并费米气体的情况下,玻色子自旋 - 自旋相互作用增强了(\eta = 1.45 \pm 0.05^{统计} \pm 0.13^{系统})倍,这为自旋 - 自旋费米子介导的相互作用提供了明确证据。我们系统中的退相干主要由非均匀玻色子密度漂移主导,在存在简并费米气体的情况下,这种漂移显著增加,再次表明存在介导相互作用。我们还根据时钟跃迁态之间的散射长度差(a_{bf_{2}} - a_{bf_{1}} = -5.36 \pm 0.44^{统计} \pm 1.43^{系统}a_{0})测量了由于玻色子 - 费米子相互作用引起的频移,这是在这种混合物中超越低能弹性近似[R. 科泰、A. 达尔加诺、H. 王和W. C. 斯特瓦利, 《物理评论A》57, R4118 (1998); A. 达尔加诺和M. 鲁奇, 《皇家学会学报A》286, 519 (1965)]的首次测量。这种相互作用可以通过未来使用玻色子 - 费米子费什巴赫共振进行调节。当原子置于光学晶格中时,费米子介导的相互作用可能会产生有趣的新磁相并扩展玻色 - 哈伯德模型。