Suppr超能文献

成纤维细胞在与癌细胞相互作用中的双刃剑作用;基于代理的建模方法。

The double-edged sword role of fibroblasts in the interaction with cancer cells; an agent-based modeling approach.

机构信息

Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran.

Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.

出版信息

PLoS One. 2020 May 8;15(5):e0232965. doi: 10.1371/journal.pone.0232965. eCollection 2020.

Abstract

Fibroblasts as key components of tumor microenvironment show different features in the interaction with cancer cells. Although, Normal fibroblasts demonstrate anti-tumor effects, cancer associated fibroblasts are principal participant in tumor growth and invasion. The ambiguity of fibroblasts function can be regarded as two heads of its behavioral spectrum and can be subjected for mathematical modeling to identify their switching behavior. In this research, an agent-based model of mutual interactions between fibroblast and cancer cell was created. The proposed model is based on nonlinear differential equations which describes biochemical reactions of the main factors involved in fibroblasts and cancer cells communication. Also, most of the model parameters are estimated using hybrid unscented Kalman filter. The interactions between two cell types are illustrated by the dynamic modeling of TGFβ and LIF pathways as well as their crosstalk. Using analytical and computational approaches, reciprocal effects of cancer cells and fibroblasts are constructed and the role of signaling molecules in tumor progression or prevention are determined. Finally, the model is validated using a set of experimental data. The proposed dynamic modeling might be useful for designing more efficient therapies in cancer metastasis treatment and prevention.

摘要

成纤维细胞作为肿瘤微环境的关键组成部分,在与癌细胞的相互作用中表现出不同的特征。虽然正常成纤维细胞表现出抗肿瘤作用,但癌相关成纤维细胞是肿瘤生长和侵袭的主要参与者。成纤维细胞功能的模糊性可以被视为其行为谱的两个方面,并可以通过数学建模来识别其转换行为。在这项研究中,创建了一个成纤维细胞和癌细胞之间相互作用的基于代理的模型。所提出的模型基于描述成纤维细胞和癌细胞通讯中涉及的主要因素的生化反应的非线性微分方程。此外,使用混合无迹卡尔曼滤波器估计大多数模型参数。两种细胞类型之间的相互作用通过 TGFβ和 LIF 途径及其串扰的动态建模来说明。使用分析和计算方法,构建了癌细胞和成纤维细胞的相互作用,并确定了信号分子在肿瘤进展或预防中的作用。最后,使用一组实验数据验证了模型。所提出的动态建模可能有助于设计更有效的癌症转移治疗和预防疗法。

相似文献

1
The double-edged sword role of fibroblasts in the interaction with cancer cells; an agent-based modeling approach.
PLoS One. 2020 May 8;15(5):e0232965. doi: 10.1371/journal.pone.0232965. eCollection 2020.
3
TGF-β signaling promotes tumor vasculature by enhancing the pericyte-endothelium association.
BMC Cancer. 2018 Jun 19;18(1):670. doi: 10.1186/s12885-018-4587-z.
5
Exosomes Induce Fibroblast Differentiation into Cancer-Associated Fibroblasts through TGFβ Signaling.
Mol Cancer Res. 2018 Jul;16(7):1196-1204. doi: 10.1158/1541-7786.MCR-17-0784. Epub 2018 Apr 10.
7
Cancer-associated fibroblasts modify lung cancer metabolism involving ROS and TGF-β signaling.
Free Radic Biol Med. 2019 Jan;130:163-173. doi: 10.1016/j.freeradbiomed.2018.10.450. Epub 2018 Nov 1.
8
Systematic Identification of Druggable Epithelial-Stromal Crosstalk Signaling Networks in Ovarian Cancer.
J Natl Cancer Inst. 2019 Mar 1;111(3):272-282. doi: 10.1093/jnci/djy097.
9
Cancer-associated fibroblast-derived Gremlin 1 promotes breast cancer progression.
Breast Cancer Res. 2019 Sep 18;21(1):109. doi: 10.1186/s13058-019-1194-0.

引用本文的文献

2
Modeling critical dosing strategies for stromal-induced resistance to cancer therapy.
NPJ Syst Biol Appl. 2025 Feb 6;11(1):16. doi: 10.1038/s41540-025-00495-0.
3
Towards verifiable cancer digital twins: tissue level modeling protocol for precision medicine.
Front Physiol. 2024 Oct 23;15:1473125. doi: 10.3389/fphys.2024.1473125. eCollection 2024.
4
Agent-based modeling in cancer biomedicine: applications and tools for calibration and validation.
Cancer Biol Ther. 2024 Dec 31;25(1):2344600. doi: 10.1080/15384047.2024.2344600. Epub 2024 Apr 28.
7
The impact of the spatial heterogeneity of resistant cells and fibroblasts on treatment response.
PLoS Comput Biol. 2022 Mar 9;18(3):e1009919. doi: 10.1371/journal.pcbi.1009919. eCollection 2022 Mar.
8
Roadmap on plasticity and epigenetics in cancer.
Phys Biol. 2022 Apr 18;19(3). doi: 10.1088/1478-3975/ac4ee2.

本文引用的文献

1
The CXCL12-CXCR4/CXCR7 axis as a mechanism of immune resistance in gastrointestinal malignancies.
Semin Cancer Biol. 2020 Oct;65:176-188. doi: 10.1016/j.semcancer.2019.12.007. Epub 2019 Dec 23.
4
Cancer-Associated Fibroblasts Build and Secure the Tumor Microenvironment.
Front Cell Dev Biol. 2019 Apr 24;7:60. doi: 10.3389/fcell.2019.00060. eCollection 2019.
5
A Review of Cell-Based Computational Modeling in Cancer Biology.
JCO Clin Cancer Inform. 2019 Feb;3:1-13. doi: 10.1200/CCI.18.00069.
6
Multiscale Agent-Based and Hybrid Modeling of the Tumor Immune Microenvironment.
Processes (Basel). 2019 Jan;7(1). doi: 10.3390/pr7010037. Epub 2019 Jan 13.
7
IL1-Induced JAK/STAT Signaling Is Antagonized by TGFβ to Shape CAF Heterogeneity in Pancreatic Ductal Adenocarcinoma.
Cancer Discov. 2019 Feb;9(2):282-301. doi: 10.1158/2159-8290.CD-18-0710. Epub 2018 Oct 26.
8
Fibroblast-associated tumour microenvironment induces vascular structure-networked tumouroid.
Sci Rep. 2018 Feb 5;8(1):2365. doi: 10.1038/s41598-018-20886-0.
9
Cancer-associated fibroblasts in tumor microenvironment - Accomplices in tumor malignancy.
Cell Immunol. 2019 Sep;343:103729. doi: 10.1016/j.cellimm.2017.12.003. Epub 2018 Feb 13.
10
Smad3-STAT3 crosstalk in pathophysiological contexts.
Acta Biochim Biophys Sin (Shanghai). 2018 Jan 1;50(1):82-90. doi: 10.1093/abbs/gmx118.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验