Suppr超能文献

迈向可验证的癌症数字孪生:精准医学的组织水平建模协议

Towards verifiable cancer digital twins: tissue level modeling protocol for precision medicine.

作者信息

Kemkar Sharvari, Tao Mengdi, Ghosh Alokendra, Stamatakos Georgios, Graf Norbert, Poorey Kunal, Balakrishnan Uma, Trask Nathaniel, Radhakrishnan Ravi

机构信息

Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, United States.

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.

出版信息

Front Physiol. 2024 Oct 23;15:1473125. doi: 10.3389/fphys.2024.1473125. eCollection 2024.

Abstract

Cancer exhibits substantial heterogeneity, manifesting as distinct morphological and molecular variations across tumors, which frequently undermines the efficacy of conventional oncological treatments. Developments in multiomics and sequencing technologies have paved the way for unraveling this heterogeneity. Nevertheless, the complexity of the data gathered from these methods cannot be fully interpreted through multimodal data analysis alone. Mathematical modeling plays a crucial role in delineating the underlying mechanisms to explain sources of heterogeneity using patient-specific data. Intra-tumoral diversity necessitates the development of precision oncology therapies utilizing multiphysics, multiscale mathematical models for cancer. This review discusses recent advancements in computational methodologies for precision oncology, highlighting the potential of cancer digital twins to enhance patient-specific decision-making in clinical settings. We review computational efforts in building patient-informed cellular and tissue-level models for cancer and Furthermore, we discuss machine learning approaches to building surrogates for these complex mathematical models. These surrogates can potentially be used to conduct sensitivity analysis, verification, validation, and uncertainty quantification, which is especially important for tumor studies due to their dynamic nature.

摘要

癌症表现出显著的异质性,表现为不同肿瘤之间明显的形态和分子变异,这常常削弱传统肿瘤治疗的疗效。多组学和测序技术的发展为揭示这种异质性铺平了道路。然而,仅通过多模态数据分析无法完全解读从这些方法收集的数据的复杂性。数学建模在利用患者特异性数据描绘潜在机制以解释异质性来源方面起着关键作用。肿瘤内的多样性需要开发精准肿瘤学疗法,利用多物理、多尺度数学模型来研究癌症。本综述讨论了精准肿瘤学计算方法的最新进展,强调了癌症数字孪生在临床环境中增强患者特异性决策的潜力。我们回顾了构建患者知情的癌症细胞和组织水平模型的计算工作,此外,我们还讨论了为这些复杂数学模型构建替代模型的机器学习方法。这些替代模型可用于进行敏感性分析、验证、确认和不确定性量化,由于肿瘤研究的动态性质,这对肿瘤研究尤为重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b638/11537925/74f52d4fd91a/fphys-15-1473125-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验