Suppr超能文献

在25特斯拉的磁场下,环电流调制芳香发色团的光电性质。

Ring currents modulate optoelectronic properties of aromatic chromophores at 25 T.

作者信息

Kudisch Bryan, Maiuri Margherita, Moretti Luca, Oviedo Maria B, Wang Leon, Oblinsky Daniel G, Prud'homme Robert K, Wong Bryan M, McGill Stephen A, Scholes Gregory D

机构信息

Department of Chemistry, Princeton University, Princeton, NJ 08540.

Dipartimento di Fisica, Politecnico di Milano, 20133 Milano, Italy.

出版信息

Proc Natl Acad Sci U S A. 2020 May 26;117(21):11289-11298. doi: 10.1073/pnas.1918148117. Epub 2020 May 8.

Abstract

The properties of organic molecules can be influenced by magnetic fields, and these magnetic field effects are diverse. They range from inducing nuclear Zeeman splitting for structural determination in NMR spectroscopy to polaron Zeeman splitting organic spintronics and organic magnetoresistance. A pervasive magnetic field effect on an aromatic molecule is the aromatic ring current, which can be thought of as an induction of a circular current of π-electrons upon the application of a magnetic field perpendicular to the π-system of the molecule. While in NMR spectroscopy the effects of ring currents on the chemical shifts of nearby protons are relatively well understood, and even predictable, the consequences of these modified electronic states on the spectroscopy of molecules has remained unknown. In this work, we find that photophysical properties of model phthalocyanine compounds and their aggregates display clear magnetic field dependences up to 25 T, with the aggregates showing more drastic magnetic field sensitivities depending on the intermolecular interactions with the amplification of ring currents in stacked aggregates. These observations are consistent with ring currents measured in NMR spectroscopy and simulated in time-dependent density functional theory calculations of magnetic field-dependent phthalocyanine monomer and dimer absorption spectra. We propose that ring currents in organic semiconductors, which commonly comprise aromatic moieties, may present new opportunities for the understanding and exploitation of combined optical, electronic, and magnetic properties.

摘要

有机分子的性质会受到磁场的影响,并且这些磁场效应是多种多样的。它们涵盖了从在核磁共振光谱学中诱导核塞曼分裂用于结构测定到极化子塞曼分裂在有机自旋电子学和有机磁电阻方面的应用。对芳香族分子普遍存在的一种磁场效应是芳香环电流,它可以被认为是在施加垂直于分子π体系的磁场时,诱导出π电子的环形电流。虽然在核磁共振光谱学中,环电流对附近质子化学位移的影响相对容易理解,甚至是可预测的,但这些改变的电子态对分子光谱学的影响仍然未知。在这项工作中,我们发现模型酞菁化合物及其聚集体的光物理性质在高达25 T的磁场下呈现出明显的磁场依赖性,聚集体根据与堆叠聚集体中环电流放大相关的分子间相互作用表现出更显著的磁场敏感性。这些观察结果与在核磁共振光谱学中测量的以及在依赖磁场的酞菁单体和二聚体吸收光谱的含时密度泛函理论计算中模拟的环电流一致。我们提出,通常包含芳香部分的有机半导体中的环电流可能为理解和利用光学、电子和磁性的组合性质提供新的机会。

相似文献

3
6
Nuclear Magnetic Shieldings of Stacked Aromatic and Antiaromatic Molecules.堆积芳香族和反芳香族分子的核磁共振屏蔽。
J Chem Theory Comput. 2017 May 9;13(5):1952-1962. doi: 10.1021/acs.jctc.6b01250. Epub 2017 Apr 4.
8
Electron Transmission through Aromatic Molecules.电子通过芳香分子的传输。
J Chem Theory Comput. 2006 Sep;2(5):1291-7. doi: 10.1021/ct600087c.
9
The induced magnetic field.感生磁场。
Acc Chem Res. 2012 Feb 21;45(2):215-28. doi: 10.1021/ar200117a. Epub 2011 Aug 17.
10
Disentangling global and local ring currents.解析全球和局部环电流。
Chem Sci. 2023 Jan 16;14(7):1762-1768. doi: 10.1039/d2sc05923a. eCollection 2023 Feb 15.

引用本文的文献

1
The Avoidance of Purine Stretches by Cancer Mutations.癌症突变避免嘌呤延伸。
Int J Mol Sci. 2024 Oct 15;25(20):11050. doi: 10.3390/ijms252011050.

本文引用的文献

1
Aromaticity and Antiaromaticity in the Excited States of Porphyrin Nanorings.卟啉纳米环激发态中的芳香性和反芳香性
J Phys Chem Lett. 2019 Apr 18;10(8):2017-2022. doi: 10.1021/acs.jpclett.9b00623. Epub 2019 Apr 10.
3
High Magnetic Field Detunes Vibronic Resonances in Photosynthetic Light Harvesting.强磁场使光合光捕获中的电子振动共振失谐。
J Phys Chem Lett. 2018 Sep 20;9(18):5548-5554. doi: 10.1021/acs.jpclett.8b02748. Epub 2018 Sep 11.
7
Site-selective measurement of coupled spin pairs in an organic semiconductor.有机半导体中耦合自旋对的位置选择性测量。
Proc Natl Acad Sci U S A. 2018 May 15;115(20):5077-5082. doi: 10.1073/pnas.1718868115. Epub 2018 May 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验