Kudisch Bryan, Maiuri Margherita, Moretti Luca, Oviedo Maria B, Wang Leon, Oblinsky Daniel G, Prud'homme Robert K, Wong Bryan M, McGill Stephen A, Scholes Gregory D
Department of Chemistry, Princeton University, Princeton, NJ 08540.
Dipartimento di Fisica, Politecnico di Milano, 20133 Milano, Italy.
Proc Natl Acad Sci U S A. 2020 May 26;117(21):11289-11298. doi: 10.1073/pnas.1918148117. Epub 2020 May 8.
The properties of organic molecules can be influenced by magnetic fields, and these magnetic field effects are diverse. They range from inducing nuclear Zeeman splitting for structural determination in NMR spectroscopy to polaron Zeeman splitting organic spintronics and organic magnetoresistance. A pervasive magnetic field effect on an aromatic molecule is the aromatic ring current, which can be thought of as an induction of a circular current of π-electrons upon the application of a magnetic field perpendicular to the π-system of the molecule. While in NMR spectroscopy the effects of ring currents on the chemical shifts of nearby protons are relatively well understood, and even predictable, the consequences of these modified electronic states on the spectroscopy of molecules has remained unknown. In this work, we find that photophysical properties of model phthalocyanine compounds and their aggregates display clear magnetic field dependences up to 25 T, with the aggregates showing more drastic magnetic field sensitivities depending on the intermolecular interactions with the amplification of ring currents in stacked aggregates. These observations are consistent with ring currents measured in NMR spectroscopy and simulated in time-dependent density functional theory calculations of magnetic field-dependent phthalocyanine monomer and dimer absorption spectra. We propose that ring currents in organic semiconductors, which commonly comprise aromatic moieties, may present new opportunities for the understanding and exploitation of combined optical, electronic, and magnetic properties.
有机分子的性质会受到磁场的影响,并且这些磁场效应是多种多样的。它们涵盖了从在核磁共振光谱学中诱导核塞曼分裂用于结构测定到极化子塞曼分裂在有机自旋电子学和有机磁电阻方面的应用。对芳香族分子普遍存在的一种磁场效应是芳香环电流,它可以被认为是在施加垂直于分子π体系的磁场时,诱导出π电子的环形电流。虽然在核磁共振光谱学中,环电流对附近质子化学位移的影响相对容易理解,甚至是可预测的,但这些改变的电子态对分子光谱学的影响仍然未知。在这项工作中,我们发现模型酞菁化合物及其聚集体的光物理性质在高达25 T的磁场下呈现出明显的磁场依赖性,聚集体根据与堆叠聚集体中环电流放大相关的分子间相互作用表现出更显著的磁场敏感性。这些观察结果与在核磁共振光谱学中测量的以及在依赖磁场的酞菁单体和二聚体吸收光谱的含时密度泛函理论计算中模拟的环电流一致。我们提出,通常包含芳香部分的有机半导体中的环电流可能为理解和利用光学、电子和磁性的组合性质提供新的机会。