Suppr超能文献

从大环到量子环:芳香性有尺寸限制吗?

From Macrocycles to Quantum Rings: Does Aromaticity Have a Size Limit?

作者信息

Jirásek Michael, Anderson Harry L, Peeks Martin D

机构信息

Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.

Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland.

出版信息

Acc Chem Res. 2021 Aug 4. doi: 10.1021/acs.accounts.1c00323.

Abstract

ConspectusThe ring currents of aromatic and antiaromatic molecules are remarkable emergent phenomena. A ring current is a quantum-mechanical feature of the whole system, and its existence cannot be inferred from the properties of the individual components of the ring. Hückel's rule states that when an aromatic molecule with a circuit of [4 + 2] π electrons is placed in a magnetic field, the field induces a ring current that creates a magnetic field opposing the external field inside the ring. In contrast, antiaromatic rings with 4 π electrons exhibit ring currents in the opposite direction. This rule bears the name of Erich Hückel, and it grew from his molecular orbital theory, but modern formulations of Hückel's rule incorporate contributions from others, particularly William Doering and Ronald Breslow. It is often assumed that aromaticity is restricted to small molecular rings with up to about 22 π electrons. This Account outlines the discovery of global ring currents in large macrocycles with circuits of up to 162 π electrons. The largest aromatic rings yet investigated are cyclic porphyrin oligomers, which exhibit global ring currents after oxidation, reduction or optical excitation but not in the neutral ground state. The global aromaticity in these porphyrin nanorings leads to experimentally measurable aromatic stabilization energies in addition to magnetic effects that can be studied by NMR spectroscopy. Wheel-like templates can be bound inside these nanorings, providing excellent control over the molecular geometry and allowing the magnetic shielding to be probed inside the nanoring. The ring currents in these systems are well-reproduced by density functional theory (DFT), although the choice of DFT functional often turns out to be critical. Here we review recent contributions to this field and present a simple method for determining the ring current susceptibility (in nA/T) in any aromatic or antiaromatic ring from experimental NMR data by classical Biot-Savart calculations. We use this method to quantify the ring currents in a variety of aromatic rings. This survey confirms that Hückel's rule reliably predicts the direction of the ring current, and it reveals that the ring current susceptibility is surprisingly insensitive to the size of the ring. The investigation of aromaticity in even larger molecular rings is interesting because ring currents are also observed when mesoscopic metal rings are placed in a magnetic field at low temperatures. The striking similarity between the ring currents in molecules and mesoscopic metal rings arises because the effects have a common origin: a field-dependent phase shift in the electronic wave function. The main difference is that the magnetic flux through mesoscopic rings is much greater because of their larger areas, so their persistent currents are nonlinear and oscillatory with the applied field, whereas the flux through aromatic molecules is so small that their response is approximately linear in the applied field. We discuss how nonlinearity is expected to emerge in large molecular nanorings at high magnetic fields. The insights from this work are fundamentally important for understanding aromaticity and for bridging the gap between chemistry and mesoscopic physics, potentially leading to new functions in molecular electronics.

摘要

概述

芳香族和反芳香族分子的环电流是显著的涌现现象。环电流是整个系统的量子力学特征,其存在不能从环的各个组成部分的性质推断出来。休克尔规则指出,当一个具有[4 + 2]π电子回路的芳香族分子置于磁场中时,该磁场会诱导出一个环电流,该环电流会在环内产生一个与外部磁场相反的磁场。相比之下,具有4π电子的反芳香环表现出方向相反的环电流。这条规则以埃里希·休克尔的名字命名,它源于他的分子轨道理论,但现代形式的休克尔规则融入了其他人的贡献,特别是威廉·多林和罗纳德·布雷斯洛的贡献。人们通常认为芳香性仅限于具有多达约22个π电子 的小分子环。本综述概述了在具有多达162个π电子回路的大型大环中发现全局环电流的情况。迄今为止研究的最大芳香环是环状卟啉低聚物,它们在氧化、还原或光激发后表现出全局环电流,但在中性基态下则不然。这些卟啉纳米环中的全局芳香性除了产生可通过核磁共振光谱研究的磁效应外,还导致实验上可测量的芳香稳定能。轮状模板可以结合在这些纳米环内部,从而对分子几何结构进行出色的控制,并允许在纳米环内部探测磁屏蔽。这些系统中的环电流可以通过密度泛函理论(DFT)很好地再现,尽管DFT泛函的选择往往至关重要。在这里,我们回顾了该领域的最新贡献,并提出了一种通过经典的毕奥 - 萨伐尔计算从实验核磁共振数据确定任何芳香或反芳香环中环电流磁化率(以nA/T为单位)的简单方法。我们使用这种方法来量化各种芳香环中的环电流值。这项研究证实,休克尔规则可靠地预测了环电流的方向,并且揭示了环电流磁化率对环的大小出奇地不敏感。对更大分子环中的芳香性进行研究很有趣,因为当介观金属环在低温下置于磁场中时也会观察到环电流。分子和介观金属环中的环电流之间惊人的相似性源于这些效应有一个共同的起源:电子波函数中与场相关的相移。主要区别在于,由于介观环的面积较大,通过它们的磁通量要大得多,因此它们的持续电流是非线性的,并且随外加磁场振荡,而通过芳香分子的磁通量非常小,以至于它们的响应在施加磁场中近似线性。我们讨论了在高磁场下大分子纳米环中预计如何出现非线性。这项工作的见解对于理解芳香性以及弥合化学和介观物理学之间的差距至关重要,有可能在分子电子学中带来新的功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验