Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
Commun Biol. 2020 May 8;3(1):220. doi: 10.1038/s42003-020-0908-2.
Over the last decades, super-resolution techniques have revolutionized the field of fluorescence microscopy. Among them, interferometric or 4Pi microscopy methods exhibit supreme resolving power in the axial dimension. Combined with single-molecule detection/localization and adaptive optics, current 4Pi microscopy methods enabled 10-15 nm isotropic 3D resolution throughout whole cells. However, further improving the achieved 3D resolution poses challenges arising from the complexity of single-molecule emission patterns generated by these coherent single-molecule imaging systems. These complex emission patterns render a large portion of information carrying photons unusable. Here, we introduce a localization algorithm that achieves the theoretical precision limit for a 4Pi based single-molecule switching nanoscopy (4Pi-SMSN) system, and demonstrate improvements in localization precision, accuracy as well as stability comparing with state-of-the-art 4Pi-SMSN methods.
在过去的几十年中,超分辨率技术彻底改变了荧光显微镜领域。其中,干涉或 4Pi 显微镜方法在轴向维度上具有最高的分辨率。结合单分子检测/定位和自适应光学,当前的 4Pi 显微镜方法可以在整个细胞中实现 10-15nm 的各向同性 3D 分辨率。然而,进一步提高所达到的 3D 分辨率面临着由这些相干单分子成像系统产生的单分子发射模式的复杂性所带来的挑战。这些复杂的发射模式使得大量携带信息的光子无法使用。在这里,我们引入了一种定位算法,该算法实现了基于 4Pi 的单分子切换纳米显微镜(4Pi-SMSN)系统的理论精度极限,并证明了与最先进的 4Pi-SMSN 方法相比,在定位精度、准确性和稳定性方面的改进。