Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana, 59812, USA.
UNC Health Care System, 1025 Think Place, Morrisville, North Carolina, 27560, USA.
Ecology. 2020 Sep;101(9):e03096. doi: 10.1002/ecy.3096. Epub 2020 Jun 9.
Boreal forest and tundra biomes are key components of the Earth system because the mobilization of large carbon stocks and changes in energy balance could act as positive feedbacks to ongoing climate change. In Alaska, wildfire is a primary driver of ecosystem structure and function, and a key mechanism coupling high-latitude ecosystems to global climate. Paleoecological records reveal sensitivity of fire regimes to climatic and vegetation change over centennial-millennial time scales, highlighting increased burning concurrent with warming or elevated landscape flammability. To quantify spatiotemporal patterns in fire-regime variability, we synthesized 27 published sediment-charcoal records from four Alaskan ecoregions, and compared patterns to paleoclimate and paleovegetation records. Biomass burning and fire frequency increased significantly in boreal forest ecoregions with the expansion of black spruce, ca. 6,000-4,000 years before present (yr BP). Biomass burning also increased during warm periods, particularly in the Yukon Flats ecoregion from ca. 1,000 to 500 yr BP. Increases in biomass burning concurrent with constant fire return intervals suggest increases in average fire severity (i.e., more biomass burning per fire) during warm periods. Results also indicate increases in biomass burning over the last century across much of Alaska that exceed Holocene maxima, providing important context for ongoing change. Our analysis documents the sensitivity of fire activity to broad-scale environmental change, including climate warming and biome-scale shifts in vegetation. The lack of widespread, prolonged fire synchrony suggests regional heterogeneity limited simultaneous fire-regime change across our study areas during the Holocene. This finding implies broad-scale resilience of the boreal forest to extensive fire activity, but does not preclude novel responses to 21st-century changes. If projected increases in fire activity over the 21st century are realized, they would be unprecedented in the context of the last 8,000 yr or more.
北方森林和苔原生物群系是地球系统的关键组成部分,因为大量碳储量的调动和能量平衡的变化可能成为对正在发生的气候变化的正反馈。在阿拉斯加,野火是生态系统结构和功能的主要驱动因素,也是将高纬度生态系统与全球气候联系起来的关键机制。古生态学记录显示,火灾发生的频率对气候和植被变化在百年到千年的时间尺度上很敏感,突出了随着变暖或景观易燃性的升高而增加的燃烧。为了量化火灾发生频率变化的时空模式,我们综合了来自阿拉斯加四个生态区的 27 份已发表的沉积物-木炭记录,并将这些模式与古气候和古植被记录进行了比较。在大约 6000 至 4000 年前黑云杉扩张的过程中,北方森林生态区的生物量燃烧和火灾频率显著增加。在温暖时期,特别是在育空平原生态区,从大约 1000 年前到 500 年前,生物量燃烧也增加了。在温暖时期,与固定的火灾返回间隔同时发生的生物量燃烧增加表明,火灾严重程度(即每次火灾燃烧的生物质量)增加。结果还表明,在过去一个世纪里,阿拉斯加大部分地区的生物量燃烧增加超过了全新世最大值,为正在发生的变化提供了重要的背景。我们的分析记录了火灾活动对包括气候变暖在内的广泛环境变化的敏感性,以及植被在生物群系尺度上的变化。在全新世期间,我们研究区域内缺乏广泛而持久的火灾同步性,这表明区域异质性限制了火灾发生频率的同时变化。这一发现意味着北方森林对广泛的火灾活动具有广泛的恢复力,但并不排除对 21 世纪变化的新反应。如果 21 世纪火灾活动的预计增加成为现实,这将是在过去 8000 年或更长时间内前所未有的。