Tinner Willy, Bigler Christian, Gedye Sharon, Gregory-Eaves Irene, Jones Richard T, Kaltenrieder Petra, Krähenbühl Urs, Hu Feng Sheng
Institute of Plant Sciences and Oeschger Center for Climate Change Research, University of Bern, Altenbergrain 21, CH-3013 Bern, Switzerland.
Ecology. 2008 Mar;89(3):729-43. doi: 10.1890/06-1420.1.
Recent observations and model simulations have highlighted the sensitivity of the forest-tundra ecotone to climatic forcing. In contrast, paleoecological studies have not provided evidence of tree-line fluctuations in response to Holocene climatic changes in Alaska, suggesting that the forest-tundra boundary in certain areas may be relatively stable at multicentennial to millennial time scales. We conducted a multiproxy study of sediment cores from an Alaskan lake near the altitudinal limits of key boreal-forest species. Paleoecological data were compared with independent climatic reconstructions to assess ecosystem responses of the forest tundra boundary to Little Ice Age (LIA) climatic fluctuations. Pollen, diatom, charcoal, macrofossil, and magnetic analyses provide the first continuous record of vegetation fire-climate interactions at decadal to centennial time scales during the past 700 years from southern Alaska. Boreal-forest diebacks characterized by declines of Picea mariana, P. glauca, and tree Betula occurred during the LIA (AD 1500-1800), whereas shrubs (Alnus viridis, Betula glandulosa/nana) and herbaceous taxa (Epilobium, Aconitum) expanded. Marked increases in charcoal abundance and changes in magnetic properties suggest increases in fire importance and soil erosion during the same period. In addition, the conspicuous reduction or disappearance of certain aquatic (e.g., Isoetes, Nuphar, Pediastrum) and wetland (Sphagnum) plants and major shifts in diatom assemblages suggest pronounced lake-level fluctuations and rapid ecosystem reorganization in response to LIA climatic deterioration. Our results imply that temperature shifts of 1-2 degrees C, when accompanied by major changes in moisture balance, can greatly alter high-altitudinal terrestrial, wetland, and aquatic ecosystems, including conversion between boreal-forest tree line and tundra. The climatic and ecosystem variations in our study area appear to be coherent with changes in solar irradiance, suggesting that changes in solar activity contributed to the environmental instability of the past 700 years.
近期的观测和模型模拟突出了森林苔原交错带对气候强迫的敏感性。相比之下,古生态研究并未提供阿拉斯加树木线响应全新世气候变化而波动的证据,这表明某些地区的森林苔原边界在数百年至数千年的时间尺度上可能相对稳定。我们对阿拉斯加一个靠近北方森林关键物种海拔上限的湖泊的沉积物岩芯进行了多指标研究。将古生态数据与独立的气候重建结果进行比较,以评估森林苔原边界对小冰期(LIA)气候波动的生态系统响应。花粉、硅藻、木炭、大化石和磁性分析提供了过去700年阿拉斯加南部十年至百年时间尺度上植被 - 火灾 - 气候相互作用的首个连续记录。在小冰期(公元1500 - 1800年)期间,以黑云杉、白云杉和桦树数量减少为特征的北方森林衰退发生,而灌木(绿桤木、矮桦)和草本类群(柳叶菜属、乌头等)扩张。木炭丰度显著增加以及磁性特征变化表明同一时期火灾重要性增加和土壤侵蚀加剧。此外,某些水生植物(如卷柏、萍蓬草属、盘星藻属)和湿地植物(泥炭藓)明显减少或消失,以及硅藻组合的重大转变表明,响应小冰期气候恶化,湖泊水位波动显著且生态系统迅速重组。我们的结果表明,1 - 2摄氏度的温度变化,若伴随水分平衡的重大变化,会极大改变高海拔陆地、湿地和水生生态系统,包括北方森林树木线和苔原之间的转变。我们研究区域的气候和生态系统变化似乎与太阳辐照度变化一致,这表明太阳活动变化促成了过去700年的环境不稳定。