Suppr超能文献

转录凝聚物在人类重复扩展疾病中的解凝聚

Unblending of Transcriptional Condensates in Human Repeat Expansion Disease.

机构信息

Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.

Institute for Chemistry and Biochemistry, Free University Berlin, 14195 Berlin, Germany.

出版信息

Cell. 2020 May 28;181(5):1062-1079.e30. doi: 10.1016/j.cell.2020.04.018. Epub 2020 May 7.

Abstract

Expansions of amino acid repeats occur in >20 inherited human disorders, and many occur in intrinsically disordered regions (IDRs) of transcription factors (TFs). Such diseases are associated with protein aggregation, but the contribution of aggregates to pathology has been controversial. Here, we report that alanine repeat expansions in the HOXD13 TF, which cause hereditary synpolydactyly in humans, alter its phase separation capacity and its capacity to co-condense with transcriptional co-activators. HOXD13 repeat expansions perturb the composition of HOXD13-containing condensates in vitro and in vivo and alter the transcriptional program in a cell-specific manner in a mouse model of synpolydactyly. Disease-associated repeat expansions in other TFs (HOXA13, RUNX2, and TBP) were similarly found to alter their phase separation. These results suggest that unblending of transcriptional condensates may underlie human pathologies. We present a molecular classification of TF IDRs, which provides a framework to dissect TF function in diseases associated with transcriptional dysregulation.

摘要

氨基酸重复扩展发生在 >20 种遗传性人类疾病中,其中许多发生在转录因子 (TF) 的无规则区域 (IDR) 中。此类疾病与蛋白质聚集有关,但聚集物对病理学的贡献一直存在争议。在这里,我们报告了 HOXD13 TF 中的丙氨酸重复扩展,该扩展导致人类遗传性并指畸形,改变了其相分离能力及其与转录共激活因子共凝聚的能力。HOXD13 重复扩展扰乱了 HOXD13 包含的凝聚物的组成在体外和体内,并以一种细胞特异性的方式改变了在并指畸形的小鼠模型中的转录程序。在其他 TF(HOXA13、RUNX2 和 TBP)中发现的与疾病相关的重复扩展也同样改变了它们的相分离。这些结果表明,转录凝聚物的去混合可能是人类病理学的基础。我们提出了一个 TF IDR 的分子分类,为解析与转录失调相关的疾病中的 TF 功能提供了一个框架。

相似文献

1
Unblending of Transcriptional Condensates in Human Repeat Expansion Disease.
Cell. 2020 May 28;181(5):1062-1079.e30. doi: 10.1016/j.cell.2020.04.018. Epub 2020 May 7.
2
A molecular pathogenesis for transcription factor associated poly-alanine tract expansions.
Hum Mol Genet. 2004 Oct 15;13(20):2351-9. doi: 10.1093/hmg/ddh277. Epub 2004 Aug 27.
4
Mutations in HOXD13 underlie syndactyly type V and a novel brachydactyly-syndactyly syndrome.
Am J Hum Genet. 2007 Feb;80(2):361-71. doi: 10.1086/511387. Epub 2007 Jan 3.
5
A splice donor site mutation in HOXD13 underlies synpolydactyly with cortical bone thinning.
Gene. 2013 Dec 15;532(2):297-301. doi: 10.1016/j.gene.2013.09.040. Epub 2013 Sep 18.
8
Mutation analysis of HOXD13 gene in a Chinese pedigree with synpolydactyly.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2005 Jun;22(3):277-80.
10
HOXD13 polyalanine tract expansion in classical synpolydactyly type Vordingborg.
Am J Med Genet. 2002 Jun 15;110(2):116-21. doi: 10.1002/ajmg.10397.

引用本文的文献

1
The emerging roles of long non-coding RNAs in the nervous system.
Nat Rev Neurosci. 2025 Sep 5. doi: 10.1038/s41583-025-00960-z.
2
6
Differential oligomerization regulates PHF13 chromatin affinity and function.
Nucleic Acids Res. 2025 Jun 20;53(12). doi: 10.1093/nar/gkaf572.
7
RNA polymerase II transcription compartments - from factories to condensates.
Nat Rev Genet. 2025 Jun 19. doi: 10.1038/s41576-025-00859-6.
8
A 'killswitch' peptide solidifies protein droplets in living cells.
Nature. 2025 Jun 18. doi: 10.1038/d41586-025-01875-6.
9
Phase Separation in Chromatin Organization and Human Diseases.
Int J Mol Sci. 2025 May 28;26(11):5156. doi: 10.3390/ijms26115156.
10
Probing condensate microenvironments with a micropeptide killswitch.
Nature. 2025 Jun 4. doi: 10.1038/s41586-025-09141-5.

本文引用的文献

1
Measurement of co-localization of objects in dual-colour confocal images.
J Microsc. 1993 Mar;169(3):375-382. doi: 10.1111/j.1365-2818.1993.tb03313.x.
2
Composition-dependent thermodynamics of intracellular phase separation.
Nature. 2020 May;581(7807):209-214. doi: 10.1038/s41586-020-2256-2. Epub 2020 May 6.
3
LASSI: A lattice model for simulating phase transitions of multivalent proteins.
PLoS Comput Biol. 2019 Oct 21;15(10):e1007028. doi: 10.1371/journal.pcbi.1007028. eCollection 2019 Oct.
4
Mediator Condensates Localize Signaling Factors to Key Cell Identity Genes.
Mol Cell. 2019 Dec 5;76(5):753-766.e6. doi: 10.1016/j.molcel.2019.08.016. Epub 2019 Sep 25.
5
Pol II phosphorylation regulates a switch between transcriptional and splicing condensates.
Nature. 2019 Aug;572(7770):543-548. doi: 10.1038/s41586-019-1464-0. Epub 2019 Aug 7.
6
Single-Molecule Nanoscopy Elucidates RNA Polymerase II Transcription at Single Genes in Live Cells.
Cell. 2019 Jul 11;178(2):491-506.e28. doi: 10.1016/j.cell.2019.05.029. Epub 2019 May 30.
7
Serial genomic inversions induce tissue-specific architectural stripes, gene misexpression and congenital malformations.
Nat Cell Biol. 2019 Mar;21(3):305-310. doi: 10.1038/s41556-019-0273-x. Epub 2019 Feb 11.
9
Transcription Factors Activate Genes through the Phase-Separation Capacity of Their Activation Domains.
Cell. 2018 Dec 13;175(7):1842-1855.e16. doi: 10.1016/j.cell.2018.10.042. Epub 2018 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验