Suppr超能文献

依赖于组成的细胞内相分离的热力学。

Composition-dependent thermodynamics of intracellular phase separation.

机构信息

Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.

Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA.

出版信息

Nature. 2020 May;581(7807):209-214. doi: 10.1038/s41586-020-2256-2. Epub 2020 May 6.

Abstract

Intracellular bodies such as nucleoli, Cajal bodies and various signalling assemblies represent membraneless organelles, or condensates, that form via liquid-liquid phase separation (LLPS). Biomolecular interactions-particularly homotypic interactions mediated by self-associating intrinsically disordered protein regions-are thought to underlie the thermodynamic driving forces for LLPS, forming condensates that can facilitate the assembly and processing of biochemically active complexes, such as ribosomal subunits within the nucleolus. Simplified model systems have led to the concept that a single fixed saturation concentration is a defining feature of endogenous LLPS, and has been suggested as a mechanism for intracellular concentration buffering. However, the assumption of a fixed saturation concentration remains largely untested within living cells, in which the richly multicomponent nature of condensates could complicate this simple picture. Here we show that heterotypic multicomponent interactions dominate endogenous LLPS, and give rise to nucleoli and other condensates that do not exhibit a fixed saturation concentration. As the concentration of individual components is varied, their partition coefficients change in a manner that can be used to determine the thermodynamic free energies that underlie LLPS. We find that heterotypic interactions among protein and RNA components stabilize various archetypal intracellular condensates-including the nucleolus, Cajal bodies, stress granules and P-bodies-implying that the composition of condensates is finely tuned by the thermodynamics of the underlying biomolecular interaction network. In the context of RNA-processing condensates such as the nucleolus, this manifests in the selective exclusion of fully assembled ribonucleoprotein complexes, providing a thermodynamic basis for vectorial ribosomal RNA flux out of the nucleolus. This methodology is conceptually straightforward and readily implemented, and can be broadly used to extract thermodynamic parameters from microscopy images. These approaches pave the way for a deeper understanding of the thermodynamics of multicomponent intracellular phase behaviour and its interplay with the nonequilibrium activity that is characteristic of endogenous condensates.

摘要

细胞内体,如核仁、Cajal 体和各种信号组装体,代表无膜细胞器或凝聚物,它们通过液-液相分离(LLPS)形成。生物分子相互作用——特别是由自我缔合的固有无序蛋白区域介导的同型相互作用——被认为是 LLPS 的热力学驱动力的基础,形成凝聚物可以促进生物化学活性复合物的组装和处理,如核仁中的核糖体亚基。简化的模型系统导致了一个单一固定饱和度浓度是内源性 LLPS 的一个定义特征的概念,并被提议作为细胞内浓度缓冲的一种机制。然而,在活细胞中,固定饱和度浓度的假设在很大程度上未经检验,在活细胞中,凝聚物的丰富多组分性质可能会使这一简单的情况变得复杂。在这里,我们表明异质多组分相互作用主导内源性 LLPS,并产生核仁及其他不表现出固定饱和度浓度的凝聚物。随着单个成分浓度的变化,它们的分配系数会发生变化,这种变化可以用来确定构成 LLPS 的热力学自由能。我们发现,蛋白质和 RNA 成分之间的异质相互作用稳定了各种典型的细胞内凝聚物,包括核仁、Cajal 体、应激颗粒和 P 体,这意味着凝聚物的组成是通过基础生物分子相互作用网络的热力学精细调节的。在 RNA 处理凝聚物的情况下,如核仁,这表现为完全组装的核糖核蛋白复合物的选择性排除,为核糖体 RNA 从核仁流出的矢量流提供了热力学基础。这种方法在概念上简单直接,易于实施,可以广泛用于从显微镜图像中提取热力学参数。这些方法为深入了解多组分细胞内相行为的热力学及其与内源性凝聚物特征性的非平衡活性的相互作用铺平了道路。

相似文献

1
Composition-dependent thermodynamics of intracellular phase separation.依赖于组成的细胞内相分离的热力学。
Nature. 2020 May;581(7807):209-214. doi: 10.1038/s41586-020-2256-2. Epub 2020 May 6.
3
RNA in formation and regulation of transcriptional condensates.RNA 的形成和转录凝聚物的调控。
RNA. 2022 Jan;28(1):52-57. doi: 10.1261/rna.078997.121. Epub 2021 Nov 12.
9
Membraneless organelles: phasing out of equilibrium.无膜细胞器:摆脱平衡状态
Emerg Top Life Sci. 2020 Dec 11;4(3):331-342. doi: 10.1042/ETLS20190190.

引用本文的文献

10
All-atom simulations of biomolecular condensates.生物分子凝聚物的全原子模拟。
Curr Opin Struct Biol. 2025 Aug;93:103101. doi: 10.1016/j.sbi.2025.103101. Epub 2025 Jul 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验