Garay József, Cressman Ross, Xu Fei, Broom Mark, Csiszár Villő, Móri Tamás F
Centre for Ecological Research, Evolutionary Systems Research Group, Klebelsberg Kuno u. 3, Tihany H-8237, Hungary; Research Group in Theoretical Biology and Evolutionary Ecology and Department of Plant Systematics, Ecology and Theoretical Biology, ELTE Eötvös Loránd University, Pázmány P. s. 1/C, H-1117 Budapest, Hungary.
Department of Mathematics, Wilfrid Laurier University, Waterloo, Ontario N2l 3C5, Canada.
J Theor Biol. 2020 Oct 7;502:110306. doi: 10.1016/j.jtbi.2020.110306. Epub 2020 May 5.
Kleptoparasitism can be considered as a game theoretical problem and a foraging tactic at the same time, so the aim of this paper is to combine the basic ideas of two research lines: evolutionary game theory and optimal foraging theory. To unify these theories, firstly, we take into account the fact that kleptoparasitism between foragers has two consequences: the interaction takes time and affects the net energy intake of both contestants. This phenomenon is modeled by a matrix game under time constraints. Secondly, we also give freedom to each forager to avoid interactions, since in optimal foraging theory foragers can ignore each food type (we have two prey types: either a prey item in possession of another predator or a free prey individual is discovered). The main question of the present paper is whether the zero-one rule of optimal foraging theory (always or never select a prey type) is valid or not, in the case where foragers interact with each other? In our foraging game we consider predators who engage in contests (contestants) and those who never do (avoiders), and in general those who play a mixture of the two strategies. Here the classical zero-one rule does not hold. Firstly, the pure avoider phenotype is never an ESS. Secondly, the pure contestant can be a strict ESS, but we show this is not necessarily so. Thirdly, we give an example when there is mixed ESS.
盗窃寄生可以同时被视为一个博弈论问题和一种觅食策略,因此本文的目的是结合两条研究路线的基本思想:进化博弈论和最优觅食理论。为了统一这些理论,首先,我们考虑到觅食者之间的盗窃寄生有两个后果:这种互动需要时间并且会影响双方竞争者的净能量摄入。这种现象通过时间限制下的矩阵博弈来建模。其次,我们也赋予每个觅食者避免互动的自由,因为在最优觅食理论中,觅食者可以忽略每种食物类型(我们有两种猎物类型:要么是另一个捕食者拥有的猎物,要么是发现的自由猎物个体)。本文的主要问题是,在觅食者相互作用的情况下,最优觅食理论的零一规则(总是或从不选择一种猎物类型)是否有效?在我们的觅食博弈中,我们考虑参与竞争的捕食者(竞争者)和从不参与竞争的捕食者(规避者),以及一般采用两种策略混合的捕食者。在这里,经典的零一规则并不成立。首先,纯规避者表型永远不是一个进化稳定策略。其次,纯竞争者可以是一个严格的进化稳定策略,但我们表明不一定如此。第三,我们给出一个存在混合进化稳定策略的例子。