Suppr超能文献

变阶粒子动力学:位错模拟的公式化及应用

Variable-order particle dynamics: formulation and application to the simulation of edge dislocations.

作者信息

Patnaik Sansit, Semperlotti Fabio

机构信息

School of Mechanical Engineering, Ray W. Herrick Laboratories, Purdue University, West Lafayette, IN 47907, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2020 May 29;378(2172):20190290. doi: 10.1098/rsta.2019.0290. Epub 2020 May 11.

Abstract

This study presents the application of variable-order (VO) fractional operators to modelling the dynamics of edge dislocations under the effect of a static state of shear stress. More specifically, a particle dynamic approach is used to simulate the microscopic structure of a material where the constitutive atoms or molecules are modelled via discrete masses and their interaction via inter-particle forces. VO operators are introduced in the formulation in order to capture the complex linear-to-nonlinear dynamic transitions following the translation of dislocations as well as the creation and annihilation of bonds between particles. Remarkably, the motion of the dislocation does not require any assumption in terms of either possible trajectory or sections of the model that could undergo the nonlinear transition associated with the creation and annihilation of bonds. The model only requires the definition of the initial location of the dislocations. Results will show that the VO formulation is fully evolutionary and capable of capturing both the sliding and the coalescence of edge dislocations by simply exploiting the instantaneous response of the system and the state of stress. This article is part of the theme issue 'Advanced materials modelling via fractional calculus: challenges and perspectives'.

摘要

本研究展示了变阶(VO)分数阶算子在模拟静态剪应力作用下边位错动力学方面的应用。更具体地说,采用粒子动力学方法来模拟材料的微观结构,其中本构原子或分子通过离散质量建模,它们之间的相互作用通过粒子间力来描述。在公式中引入VO算子,以捕捉位错平移后复杂的线性到非线性动态转变以及粒子间键的产生和湮灭。值得注意的是,位错的运动在可能的轨迹或模型中可能经历与键的产生和湮灭相关的非线性转变的部分方面不需要任何假设。该模型仅需要定义位错的初始位置。结果将表明,VO公式是完全演化的,并且能够通过简单地利用系统的瞬时响应和应力状态来捕捉边位错的滑动和合并。本文是主题为“通过分数阶微积分进行先进材料建模:挑战与展望”的一部分。

相似文献

1
Variable-order particle dynamics: formulation and application to the simulation of edge dislocations.变阶粒子动力学:位错模拟的公式化及应用
Philos Trans A Math Phys Eng Sci. 2020 May 29;378(2172):20190290. doi: 10.1098/rsta.2019.0290. Epub 2020 May 11.
2
A novel approach to nonlinear variable-order fractional viscoelasticity.一种非线性变阶分数粘弹性的新方法。
Philos Trans A Math Phys Eng Sci. 2020 May 29;378(2172):20190296. doi: 10.1098/rsta.2019.0296. Epub 2020 May 11.
3
Advanced materials modelling via fractional calculus: challenges and perspectives.基于分数阶微积分的先进材料建模:挑战与展望。
Philos Trans A Math Phys Eng Sci. 2020 May 29;378(2172):20200050. doi: 10.1098/rsta.2020.0050. Epub 2020 May 11.
4
Applications of variable-order fractional operators: a review.变阶分数阶算子的应用:综述
Proc Math Phys Eng Sci. 2020 Feb;476(2234):20190498. doi: 10.1098/rspa.2019.0498. Epub 2020 Feb 12.
6
Mathematical modelling with experimental validation of viscoelastic properties in non-Newtonian fluids.用实验验证非牛顿流体粘弹性的数学建模。
Philos Trans A Math Phys Eng Sci. 2020 May 29;378(2172):20190284. doi: 10.1098/rsta.2019.0284. Epub 2020 May 11.
7
Application of fractional calculus methods to viscoelastic behaviours of solid propellants.分数阶微积分方法在固体推进剂粘弹性行为中的应用。
Philos Trans A Math Phys Eng Sci. 2020 May 29;378(2172):20190291. doi: 10.1098/rsta.2019.0291. Epub 2020 May 11.
8
Fractional-order nonlinear hereditariness of tendons and ligaments of the human knee.人体膝关节肌腱和韧带的分数阶非线性遗传性。
Philos Trans A Math Phys Eng Sci. 2020 May 29;378(2172):20190294. doi: 10.1098/rsta.2019.0294. Epub 2020 May 11.
9
Diffusive atomistic dynamics of edge dislocations in two dimensions.二维边缘位错的扩散原子动力学
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Mar;73(3 Pt 1):031609. doi: 10.1103/PhysRevE.73.031609. Epub 2006 Mar 29.
10
Fractional-order heat conduction models from generalized Boltzmann transport equation.基于广义玻尔兹曼输运方程的分数阶热传导模型。
Philos Trans A Math Phys Eng Sci. 2020 May 29;378(2172):20190280. doi: 10.1098/rsta.2019.0280. Epub 2020 May 11.

引用本文的文献

1
Advanced materials modelling via fractional calculus: challenges and perspectives.基于分数阶微积分的先进材料建模:挑战与展望。
Philos Trans A Math Phys Eng Sci. 2020 May 29;378(2172):20200050. doi: 10.1098/rsta.2020.0050. Epub 2020 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验